Το απόλυτο αντισεισμικό σύστημα

Θέματα πολεοδομίας, δομικών έργων, ρυθμίσεις αυθαιρέτων κλπ
Απάντηση
seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 11 Μαρ 2014 17:24

α)Συχνότητα ονομάζουμε τον αριθμό των επαναλήψεων ενός γεγονότος στη μονάδα του χρόνου. Η συχνότητα χαρακτηρίζει οποιοδήποτε φυσικό μέγεθος μεταβάλλεται περιοδικά, δηλαδή επαναλαμβάνει τις ίδιες τιμές σε τακτά χρονικά διαστήματα.

β)Ιδιοσυχνότητα


Συντονισμός στην κυματική καλείται το φαινόμενο της εξαναγκασμένης ταλάντωσης κατά το οποίο η συχνότητα του διεγέρτη ταυτίζεται με την ιδιοσυχνότητα του ταλαντωτή.
Κάθε ταλαντωτής μπορεί να ταλαντώνεται σε μία ή περισσότερες συχνότητες. Όταν το σύστημα διεγείρεται στιγμιαία, τότε αρχίζει η ταλάντωση η οποία συμβαίνει με συχνότητα που ταυτίζεται με την ιδιοσυχνότητά του. Όταν η ταλάντωση είναι εξαναγκασμένη, η συχνότητα της είναι η συχνότητα του διεγέρτη. Όταν η συχνότητα του διεγέρτη ταυτίζεται με την ιδιοσυχνότητα του ταλαντωτή έχουμε συντονισμό.
Κατά το συντονισμό το σύστημα έχει το μέγιστο δυνατό πλάτος και τη μέγιστη δυνατή ενέργεια. Αν δεν υπάρχουν αποσβεστικές δυνάμεις, τότε το πλάτος της ταλάντωσης γίνεται θεωρητικά άπειρο. Έτσι, η ταλάντωση μπορεί να γίνει τόσο έντονη, ώστε να καταστραφεί ο ταλαντωτής. Αν η προσφορά ενέργειας είναι μεγαλύτερη, τότε υπάρχει κίνδυνος καταστροφής του ταλαντωτή.

γ) Η ροπή αδράνειας (ή γωνιακή μάζα) είναι μέγεθος της μηχανικής και εκφράζει την κατανομή των υλικών σημείων ενός σώματος ως προς έναν άξονα περιστροφής. Συμβολίζεται με Ι και έχει διαστάσεις μάζας επί μήκος στο τετράγωνο (σε μονάδες διεθνούς συστήματος kg·m2). Υπολογίζεται ως άθροισμα γινομένων στοιχειωδών μαζών επί το τετράγωνο της αποστασής τους από έναν άξονα.

Η ροπή αδράνειας έχει στην περιστροφική κίνηση την σημασία που έχει η μάζα στην γραμμική. Συγκεκριμένα, η φυσική σημασία της ροπής αδράνειας σχετίζεται με την ικανότητα που έχουν τα σώματα να αντιστέκονται σε μεταβολές της περιστροφικής τους κατάστασης. Όσο μεγαλύτερη ροπή αδράνειας έχει ένα σώμα, τόσο δυσκολότερα περιστρέφεται.
Ας σημειωθεί επίσης ότι η ροπή αδράνειας ορίζεται πάντοτε ως προς κάποιον άξονα περιστροφής.

δ) Γωνιακή επιτάχυνση ονομάζουμε τον ρυθμό μεταβολής της γωνιακής ταχύτητας ενός σώματος.

Απάντηση
Όλα αυτά που ανάφερα πάρα πάνω, για να ισχύσουν χρειάζεται μία βασική αρχή, ( την ελευθερία κινήσεων των σωμάτων τουλάχιστον προς μίαν κατεύθυνση. )
Παράδειγμα
Αν έχουμε μία ράβδο πακτωμένη στο ένα άκρο της, αυτή μπορεί να συντονιστεί όταν η συχνότητα του διεγέρτη ταυτίζεται με την ιδιοσυχνότητα του ταλαντωτή.
Αν όμως στο ένα ελεύθερο άκρο της ράβδου εφαρμόσουμε μία δύναμη απόσβεσης το φαινόμενο της ταλάντωσης δεν σταματά, αλλά δεν πολλαπλασιάζεται.
Αν είσαι σε ένα καράβι, θα έχεις προσέξει τα τραπέζια που έχουν ένα πόδι, να τρέμουν.
Μόλις όμως ακουμπήσεις το δάκτυλό σου επάνω στο τραπέζι, σταματάει αμέσως η μεγάλη ταλάντωση.
Συμπέρασμα
Αν εφαρμόσουμε μία δύναμη αντίθετη στο εξωτερικό μέρος ενός άξονα, αυτός φρενάρει.
Δηλαδή σταματήσαμε την γωνιακή επιτάχυνση, και γενικά αν η δύναμη είναι μεγάλη, σταματάμε και την κινητική ενέργεια της ροπής.π.χ τα φρένα.
Το ίδιο συμβαίνει και με το τραπέζι και το δάκτυλο.
Το ίδιο συμβαίνει και με την πάκτωση εδάφους δώματος που εφαρμόζει η μέθοδος της ευρεσιτεχνίας μου.
Δηλαδή πάνε περίπατο οι υπολογισμοί που κάνετε για την ιδιοσυχνότητα, και την ροπή αδράνειας.
Αυτό συμβαίνει διότι εφαρμόζεται περιοδική απόσβεση, σε κάθε κύκλο ή περίοδο φόρτισης, έως και φρενάρισμα της κίνησης.
Εξισώσεις ισορροπίας του κάθε υποστυλώματος ξεχωριστά, υπολογίζοντας και την πλάγια δύναμη αδράνειας των πλακών που εφαρμόζουν αυτές στα υποστυλώματα, είναι η λύση.
Αυτήν την πάκτωση που εκτελούν τα φρένα στο πλατό, αυτήν την πάκτωση σας δείνω εγώ στο δώμα.
Δηλαδή εφαρμόζω μέσο της ευρεσιτεχνίας μου, εξισώσεις ισορροπίας προς στις ροπές και εξισώσεις απόσβεσης στην φυσική ταλάντωση του φέροντα ώστε η ταλάντωση να μην πολλαπλασιάζετε και να προκαλεί το φαινόμενο της ιδιοσυχνότητας διεγέρτη και ταλαντωτή.
που σε φυσικές συνθήκες μεγαλώνει σταδιακά το πλάτος ταλάντωσης μέχρι συνθήκης καταρρεύσεως, του φέροντα.
Αυτά τα λέω επικαλούμενους νόμους της κινηματικής

Αυτά που είπα πάρα πάνω, καταρρίπτουν ( ως λανθασμένους ) όλους τους αντισεισμικούς κανονισμούς στον κόσμο.
Διότι η ροπή και η ιδιοσυχνότητα είναι οι κύριες αιτίες αστοχίας των κατασκευών.
Και εγώ τους βρήκα την μέθοδο που λύνει αυτά τα δύο προβλήματα. ....και πολλά άλλα ...
Η δύναμη αυτή που εφαρμόζω στο δώμα, πρέπει να προέρχεται από εξωτερικό παράγοντα.
Εγώ, αυτήν την δύναμη, την άρπαξα από το έδαφος, και με την βοήθεια του τένοντα, την μετέφερα στο δώμα.
Την ισχυρή προένταση την εφαρμόζω μεταξύ της επιφανείας του εδάφους, ( στο ύψος της θεμελίωσης ) και τα βάθη της γεώτρησης, πριν την κατασκευή της οικοδομής, για να πετύχω πρώτα την ισχυρή πάκτωση στα πρανή της γεώτρησης.
Μετά σταδιακά ( με την βοήθεια περικοχλίου ) κατά την κατασκευή της οικοδομής, επεκτείνουμε τον τένοντα μέχρι την οροφή, όπου εκεί ή απλά τον πακτώνουμε στο δώμα, ή άμα θέλουμε του εφαρμόζουμε μικρή ( δεύτερη ) προένταση.
Αυτή η μέθοδος εφαρμόζετε πρώτη φορά.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 28 Μαρ 2014 19:05

Όποιος καλός θέλει και μπορεί να με βοηθήσει στην έρευνά μου, ας μου πει αν αγοράσω αυτό το εργαλείο μετρήσεων της επιτάχυνσης, αν θα μπορώ να έχω αξιόλογες μετρήσεις των πειραμάτων μου.
Για τη μέτρηση της επιτάχυνσης μου πρότειναν τη λύση του συστήματος FastTracer που περιλαμβάνει το επιταχυνσιόμετρο, καλώδιο σύνδεσης και λογισμικό. Διατίθεται και σε ασύρματη έκδοση.
​Δείτε τεχνικές πληροφορίες παρακάτω
http://www.sequoia.it/en/fast_tracer.htm
http://www.sequoia.it/media/FastTracer_NEWS.pdf

Υπάρχει ο συντελεστής σεισμικής απόκρισης q
ο οποίος βασικά κατατάσσει τα κτίρια με πλαστιμότητα χαμηλή, μέση, και υψηλή.
Έχετε σκεφτεί ποτέ ότι ένα κτίριο μπορεί να είναι εντελώς άκαμπτο και να έχει την ικανότητα να παραλαμβάνει καλύτερα και από τα πλάστιμα κτίρια την πλάγια φόρτιση του σεισμού?
Φυσικά και δεν το έχετε σκεφτεί, γιατί πρώτα όταν τα κτίρια κατασκευάζονταν με χαμηλή πλαστιμότητα είχαν πιο πολλές αστοχίες.
Ο σχεδιασμός σας πάντα μετατρέπει την πλάγια φόρτιση του σεισμού σε ροπές εφαρμοζόμενες στους κόμβους, η οποίες μεταλλάσσονται σε τέμνουσες στις μικρές διατομές των υποστυλωμάτων,των τοιχίων, και των δοκών.
Φυσικά με αυτήν την μέθοδο που σχεδιάζετε σήμερα, ο καλύτερος τρόπος σχεδιασμού είναι η υψηλή πλαστιμότητα.
Αυτήν την υψηλή πλαστιμότητα χρησιμοποιούν και τα δένδρα στα κλαδιά τους.
Τα δένδρα όμως έχουν και ρίζες, δηλαδή έχουν και μία πολύ ισχυρή πάκτωση την οποία εσείς δεν έχετε.
Νομίζετε ότι έχετε, ( με τα υπόγεια ) αλλά δεν έχετε πραγματική πάκτωση.
Η διαφορά στην πάκτωση των κατασκευών και των δένδρων έγκειται στο ότι οι ίνες των δένδρων τραβάνε το χώμα, ενώ οι κολώνες τραβάνε τον πεδιλοδοκό, δημιουργώντας μοχλό.
Το δένδρο δεν δημιουργεί ροπή στον κόμβο δένδρου εδάφους, ούτε οριζόντιο μοχλό, γιατί δεν είναι ενωμένα στον κόμβο,... ενώ η κολόνα δημιουργεί ροπή στον κόμβο μεταξύ κολόνας και πεδιλοδοκού, λόγο στρέψης που προκαλεί η πάκτωση των δύο στον κόμβο.
Το ίδιο κάνω και εγώ με την μέθοδο κατασκευών που προτείνω.
Κάνω αυτό που κάνει το δένδρο. Βάζω ρίζες στην κατασκευή, σε κάθε κολόνα και κάθε τοιχίο.
Οι ρίζες του δένδρου κατευθύνονται κάθετα του κορμού, και πακτώνονται στο χώμα.
Οι δικές σας ρίζες ( οπλισμός πεδιλοδοκού ) κατευθύνονται οριζόντια, και πακτώνονται στην ίδια κατασκευή που έχει το πρόβλημα.
Αυτό είναι το λάθος σας, διότι άλλο πάκτωση κατασκευής και εδάφους, και άλλο πάκτωση κατασκευής με κατασκευή.
Είναι σαν να πιάνεστε από την άκρη ενός σχοινιού, όπου η άλλη του άκρη δεν είναι δεμένη πουθενά, και να απαιτείται από το σχοινί να σας κρατήσει.
Σαν την παροιμία που λέει ότι αυτός που πνίγεται από τα μαλλιά του πιάνεται.
Αυτό που κάνει το δένδρο με τις ρίζες, είναι η πάκτωση της βάσης του κορμού του με το έδαφος.
Το μέρος του δένδρου έξω από το χώμα είναι πλάστιμο.
Αυτό θα μπορούσα να το κάνω και εγώ με την ευρεσιτεχνία μου, πακτώνοντας μόνο την βάση με το έδαφος, και όχι το δώμα με το έδαφος.
Γιατί δεν το κάνω και επιμένω στην πάκτωση δώματος εδάφους?
Πολύ απλά,... για να σταματήσω τελείως την παραμόρφωση, διότι το κτίριο δεν είναι δένδρο, έχει επάνω του μη φέροντα στοιχεία όπως είναι η τοιχοποιία η οποία λόγο πλαστιμότητας και παραμόρφωσης αστοχεί.
Δεν θέλω επισκευές..πολύ απλά.
Δεν είμαι από αυτούς που θέλω σεισμική απόσβεση.
Εγώ θέλω παραλαβή 100% των φορτίσεων του σεισμού χωρίς απόσβεση, χωρίς παραμορφώσεις.
Για να πετύχω αυτήν την αντοχή του κτιρίου, πάκτωσα το δώμα με έναν εξωτερικό πανίσχυρο παράγοντα, που είναι το έδαφος.
Αυτή η πάκτωση εκτρέπει την κατεύθυνση των πλάγιων φορτίσεων του σεισμού, στην κατακόρυφη διατομή των κάθετων στοιχείων, λόγο αντίδρασης του τένοντα στο δώμα, και του εδάφους στο Π της βάσης.
Πάνε και οι ροπές στους κόμβους, πάει περίπατο και η πλαστιμότητα.
Παραλαμβάνω την φόρτιση του σεισμού με άλλη τεχνική.
Εσείς μάθατε στις σπουδές που κάνατε να σχεδιάζετε έτσι.
Τι να πω μαζί σας, όταν εγώ είμαι ο δάσκαλος που σας λέει μία άλλη μέθοδο.
Εσείς κατασκευάζετε ένα δένδρο που απλά το χώνετε λίγο μέσα στο χώμα χωρίς καν να έχει ρίζες, ενώ εγώ κατασκευάζω έναν παραλληλόγραμμο τάκο βιδωμένο στο έδαφος.
Πιο από τα δύο συστήματα σχεδιασμού αντέχει περισσότερο στην αδράνεια.... το δικό σας, ή το δικό μου.?

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 22 Απρ 2014 10:58

Αν έχουμε ένα έλκηθρο και το τραβήξουμε με ένα σχοινί πάνω στην άμμο, αυτό θα ολισθήσει πάνω στην άμμο χωρίς πρόβλημα.
Αν έχουμε μία κασέλα και την τραβήξουμε με ένα σχοινί πάνω στην άμμο, αυτή όσο την τραβάμε, τόσο θα χώνεται μέσα στην άμμο, μέχρι να ανατραπεί.
Αυτή η διαφορά αντίδρασης αυτών των δύο αντικειμένων, έγκειται στο σχήμα τους.
Το έλκηθρο λόγο του ότι είναι μπροστά στρογγυλό, υπερνικά τα εμπόδια και μπορεί να ολισθαίνει πάνω στην άμμο.
Η γωνία όμως της κασέλας χώνεται μέσα στην άμμο, και αυτή η αντίδραση της άμμου μετατρέπει την οριζόντια κίνηση της κασέλας σταδιακά σε αυξανόμενη ροπή αδράνειας.
Το ίδιο συμβαίνει και με τις οικοδομές στις οποίες μάλιστα έχουμε φροντίσει να κατασκευάσουμε αυτό το ανάχωμα μόνοι μας, το οποίο ανάχωμα είναι η βάση.
Το συμπέρασμα από τα προαναφερθέντα είναι ότι, όλη η επιτάχυνση του σεισμού μετατρέπεται σε γωνιακή ταχύτητα πάνω στο κτήριο, την λεγόμενη ροπή αδράνειας.
Όσο μεγαλύτερη είναι η ροπή αδράνειας του κτηρίου, τόσο μεγαλύτερη είναι και η αντίδραση του κτηρίου στην περιστροφή.

Βασικά το κτήριο στον σεισμό μετατρέπεται σε έναν κύλινδρο που περιστρέφεται γύρο από δύο σημεία, πότε από την μία, και πότε από την άλλη μεριά. ( γύρω από δύο κέντρα περιστροφής τα οποία βρίσκονται στην κάθε άκρη των εξωτερικών πλευρών του κτηρίου. )
Όμως το κτήριο δεν είναι κύλινδρος διότι δεν είναι ούτε συμπαγή, ούτε έχει κυλινδρικό σχήμα.
Βασικά αυτό που ονομάζουμε ταλάντωση, του φέροντα δεν είναι τίποτε άλλο από μία γωνιακή ταχύτητα ενός άξονα ( κολόνα ) ο οποίος σέρνει βαρίδια ( πλάκες δικοί )κατά το μήκος του, εναλλάξ.
Ακόμα ...περιστροφή σημαίνει άνοδος του δώματος από την μία πλευρά της οικοδομής.
Άνοδο του δώματος από την μία πλευρά της οικοδομής, σημαίνει ότι οι κολόνες που είναι από την μεριά της ανόδου, χάνουν την επαφή τους με το έδαφος.
Αφού χάνουν την επαφή τους με το έδαφος, αυτό σημαίνει αυτόματη απενεργοποίηση της αντίδρασης του εδάφους προς τις κολόνες η οποία είναι αναγκαία για την ισορροπία της οικοδομής.
Αφού τα φορτία της οικοδομής είναι στον αέρα, κατευθύνονται προς την Γη που τα έλκει από την μεριά που δεν ισορροπούν.
Αυτά τα φορτία, αν αδυνατούν να τα παραλάβουν οι κόμβοι των κολονών που ισορροπούν, με το έδαφος, τότε σπάνε.
Οι κόμβοι σε αυτή την φάση καταπονούνται από στρέψεις ( στροφές, ροπές )
Αν αυτές οι στρέψεις είναι μέσα στο ελαστικό φάσμα κολόνας και δοκού, τότε η ενέργεια αποθηκεύεται και επανακυκλοφορεί προς την αντίθετη κατεύθυνση στο τέλος κάθε κύκλου.
Αν οι μετακινήσεις είναι μεγάλες και γρήγορες, μεγαλύτερες του ελαστικού φάσματος επέρχεται αστοχία.
Από αυτά που προανέφερα, καταλαβαίνουμε χωρίς πειράματα ότι η αστοχία στις κατασκευές συντελείτε από τον συνδυασμό δύο βασικών φορτίσεων πάνω στον κόμβο, οι οποίες δημιουργούν μία στροφή στον κόμβο
α) Την γωνιακή ροπή του κτηρίου προερχόμενη από την αδράνεια ( ροπή αδράνειας )
β) Τα στατικά του φορτία, τα οποία ενεργοποιεί η γωνιακή ροπή

Σήμερα σχεδιάζουν έτσι ώστε να αποθηκεύουν αυτές τις μετατοπίσεις φόρτισης μέσα στο ελαστικό φάσμα της κολόνας και της δοκού, και αν οι μετατοπίσεις περάσουν αυτό το ελαστικό φάσμα επέρχεται αστοχία η οποία περνά στην πλαστική περιοχή όπου δημιουργεί μετατοπίσεις μη αναστρέψιμες.
Αυτό δεν σημαίνει ότι θα πέσει η κατασκευή.
Οι μηχανικοί έχουν φροντίσει αυτή η αστοχία να γίνει στην δοκό, και όχι στο υποστύλωμα, το οποίον αν αστοχήσει πρώτο, θα υπάρξει κατάρρευση της κατασκευής.
Ακόμα τα πολλά πικνά τσέρκια, τόσο στα υποστυλώματα όσο και στις δοκούς, εκτός των άλλων, δημιουργούν κλωβούς, οι οποίοι δεν αφήνουν τα σπασμένα κομμάτια σκυροδέματος να βγουν από έξω από την περίσφιξη.
Αυτό προσδίδει πλαστιμότητα στα στοιχεία, και εκτόνωση των φορτίσεων.
Βασικά πέρα από το ελαστικό φάσμα, επέρχεται αστοχία έτσι σχεδιασμένη, ώστε να μην καταρρεύσει η οικοδομή.
Φυσικά αν οι αστοχίες είναι πολλές, και είναι και λοξής / μορφής, τότε η κατασκευή θέλει κατεδάφιση.
Αυτός είναι ο σχεδιασμός σήμερα....
Θα συνεχίσω και να σας πω την δική μου μέθοδο.
Η μέθοδός μου για να αποδώσει τα μέγιστα κάνει ακριβώς τα αντίθετα από ότι κάνει ο σημερινός αντισεισμικός σχεδιασμός.
Δεν προσπαθεί να βελτιώσει την δική σας μέθοδο, αλλά κάνει ακριβώς το αντίθετο.

Αυτός είναι και ο κύριος λόγος που η επιστήμη προσπαθεί να σταματήσει την μέθοδό μου, και μέχρι τώρα το έχει κατορθώσει καλύτερα από ότι τα έχει καταφέρει με τον σεισμό.
1) Εσείς θέλετε ελαστικούς σκελετούς, εγώ θέλω άκαμπτους.
2) Εσείς θέλετε ο οπλισμός των κάθετων στοιχείων να συνεργάζεται με το σκυρόδεμα μέσο της συνάφειας, εγώ θέλω ο οπλισμός να είναι προτεταμένος, μεταξύ δώματος και εδάφους θεμελίωσης.
3) Εσείς θέλετε να ακουμπάτε την οικοδομή πάνω στο έδαφος ( νομίζοντας ότι την πακτώνεται κατ αυτόν τον τρόπο μέσα στην εκσκαφή της βάσης και των υπογείων, ενώ δεν συμβαίνει αυτό ) εγώ εφαρμόζω μία εξωτερική αντίδραση στο δώμα, προερχόμενη από το έδαφος.
Ουσιώδεις διαφορές, τις οποίες πρέπει να εξετάσουμε μία μία ξεχωριστά, αναδικνύωντας τα υπέρ και τα κατά.
Ας εξετάσουμε την πρώτη θεμελιώδη διαφορά των δύο διαφορετικών μεθόδων.
1) Εσείς θέλετε ελαστικούς σκελετούς, εγώ θέλω άκαμπτους.
Φυσικά κανένας δεν θέλει την παραμόρφωση του φέροντα οργανισμού.
Η παραμόρφωση είναι αυτή που δημιουργεί αστοχίες και κατάρρευση της κατασκευής.
Λατρεύετε την παραμόρφωση διότι είναι από μόνος του ένας μηχανισμός απόσβεσης της σεισμικής ενέργειας.
Αρκεί βέβαια η παραμόρφωση αυτή να είναι μέσα στο ελαστικό φάσμα.
Ο συντονισμός είναι αυτός που σας χαλάει πολλές φορές τα σχέδια, διότι μετατρέπει την σεισμική απόσβεση της ταλάντωσης σε μεγάλα πλάτη ταλάντωσης, με αποτέλεσμα να έχουμε τα αντίθετα μη ελεγχόμενα αποτελέσματα.
Βέβαια υπάρχουν προγράμματα Η/Υ που υπολογίζουν την ιδιοσυχνότητα του διεγέρτη και του ταλαντωτή.
Δεν υπάρχει όμως πρόγραμμα το οποίο να υπολογίζει 100% τον συντονισμό.
Φυσικά οι σχεδιαζόμενες κατασκευές σας δεν πρέπει να εφάπτονται με άλλα γειτονικά κτήρια για να ισχύσουν τα πάρα πάνω. Ακόμα ... Ένα σημαντικό τμήμα των εξελίξεων για την αντισεισμική ενίσχυση των κατασκευών, αντιτίθεται με τις σύγχρονες αρχιτεκτονικές ανάγκες, οι οποίες απαιτούν όσο το δυνατό ελεύθερες κατόψεις ( μη συμμετρική κατασκευή Ο/Σ ) και μείωση των φερόντων στοιχείων του κτιρίου.
Επίσης, οι αρχιτεκτονικές ανάγκες διαφοροποιούν καθ’ ύψος την επιφάνειας κάλυψης (κάτοψης) του κτιρίου.

Τα προβλήματα που προκύπτουν από την εφαρμογή των παραπάνω αρχιτεκτονικών απαιτήσεων είναι είτε η δημιουργία
«μαλακού ορόφου», είτε οι ουσιαστικές αποκλίσεις από την επιθυμητή συμμετρική διάταξη των στοιχείων ακαμψίας, καθώς και την εντονότερη καταπόνηση της κατασκευής, λόγω συγκέντρωσης εντατικών μεγεθών, και στρεπτικών φαινομένων που παρατηρείται στις ασύμμετρες κατασκευές.
Δηλαδή ο σχεδιασμός του στατικού, δεν είναι συμβατός με τις αρχιτεκτονικές ανάγκες σχεδιασμού.
Ακόμα τα δικά σας σχεδιαζόμενα άκαμπτα κατακόρυφα στοιχεία, καταπονούν με πολλές στρέψεις τον κόμβο.
Βασικά ο σχεδιασμός σας είτε σχεδιάζει ελαστικά, είτε σχεδιάζει άκαμπτες κατασκευές, πάντα δημιουργεί στρέψεις στους κόμβους.
Η λύση που προσφέρει η ευρεσιτεχνία μου είναι ότι ...με την πάκτωση του δώματος με το έδαφος, εκτρέπει την πλάγια φόρτιση του σεισμού, στην κατακόρυφη διατομή του άκαμπτου κατακόρυφου στοιχείου.
Αυτή η εκτροπή, είναι αυτό που σας έλειπε διότι, το κατακόρυφο τοιχίο αναλαμβάνει 100% την πλάγια φόρτιση του σεισμού, καταργώντας όλες τις στρέψεις στους κόμβους.
Υπάρχουν τεχνικές οι οποίες σχεδιαστικά μπορούν να δώσουν πιο άκαμπτες κατασκευές από αυτές που εσείς εφαρμόζετε σήμερα.
1) Τα γωνιακά τοιχία ( L) είναι πολύ πιο άκαμπτα από τα παραλληλόγραμμα, ( - ) και τοποθετούνται πάντα στις γωνίες του κτηρίου.
Για τα ενδιάμεσα περιφερειακά τοιχία, η ακαμψία τους εξασφαλίζετε όταν τα σχεδιάσουμε σε σχήμα ( Τ ), και για τα εσωτερικά τοιχία όταν τα σχεδιάζουμε σε σχήμα ( + ) σταυρού, ή σε σχήμα ( Π )
2) Η πάκτωση των άκρων αυτών των σχημάτων, και ακόμα καλύτερα η προένταση αυτών μεταξύ δώματος και εδάφους, προσδίδουν μεγαλύτερη ακαμψία. Ο πυκνός εγκάρσιος οπλισμός ( τσέρκια ) αυξάνει την συνάφεια και αντοχή του σκυροδέματος σε θλιπτικές τάσεις.
3) Η κατασκευή μιας μεγάλης ανεστραμμένης δοκού περιφερειακά του δώματος στην κατασκευή, εξασφαλίζει ισχυρότερους κόμβους με τα τοιχία, και όλη η κατασκευή γίνεται πιο άκαμπτη.
Μικρή σεισμική απόσβεση μέσα στο ελαστικό φάσμα των άκαμπτων κατακόρυφων τοιχίων μπορούμε να το πετύχουμε τοποθετώντας ελατήριο, ελαστικό, ή υδραυλικό σύστημα στο δώμα.
Στα πάρα κάτω δύο βίντεο φαίνεται πως κατόρθωσα να σχεδιάσω την τέλεια άκαμπτη κατασκευή. ( Σαν τσιμεντόλιθος )
https://www.youtube.com/watch?v=RoM5pEy7n9Q
Αυτός ήταν από εμένα συνειδητός αντισεισμικός σχεδιασμός, ενός τελείως άκαμπτου φέροντα, και σας συνιστώ να τον εφαρμόζεται και εσείς, αν θέλετε πολύ μικρές παραμορφώσεις οι οποίες δεν θα επιτρέπουν αστοχίες.
Αυτά τα άκαμπτα σχήματα κάτοψις των κατακόρυφων τοιχίων που σας έδωσα, βοηθούν και τον αντισεισμικό σχεδιασμό για άκαμπτες κατασκευές, αλλά και τις αρχιτεκτονικές ανάγκες σχεδιασμού.


https://www.youtube.com/watch?v=KR9G0DZjbRM
Φυσικά αν είχα σχεδιάσει έναν άκαμπτο φέροντα, ( τσιμεντόλιθο ) χωρίς την αναγκαία πάκτωση δώματος εδάφους, τότε, και τους κόμβους θα καταπονούσα περισσότερο λόγο μεγαλύτερων στατικών φορτίων, αλλά σε ψιλά κτήρια θα είχαμε και την ολική ανατροπή του φέροντα λόγο ακαμψίας.
Π.χ αυτό φαίνεται καθαρά στο πάρα κάτω βίντεο πείραμα, στο οποίο δεν υπάρχει η πάκτωση δώματος και εδάφους.
Ενώ η επιτάχυνση είναι πολύ μικρή, η ανατροπή είναι εμφανέστατη.
https://www.youtube.com/watch?v=Ux8TzWYvuQ0
Αυτός είναι και ο κύριος λόγος που δεν μπορούσατε έως τώρα να σχεδιάσετε ψιλές άκαμπτες κατασκευές.
Η ακαμψία σε συνδυασμό με την πάκτωση του εδάφους με το δώμα, είναι αυτή που επιτρέπει στην κατασκευή να αντέχει τόση μεγάλη επιτάχυνση σε g χωρίς την παραμικρή αστοχία.
Αν έχετε απορίες, ή διαφωνείτε σε αυτά που λέω, ευχαρίστως να γίνει συζήτηση.

Υ.Γ
στοιχεία πειράματος https://www.youtube.com/watch?v=RoM5pEy7n9Q
Συχνότητα ν σε Hertz 2
Πλάτος ταλάντωσης σε m=0,11
ω σε rad/sec 12,5663706144
ΜΑΧ Tαχύτητα m/sec 1,3823007676
ΜΑΧ Επιτάχυνση α σε m/sec^2 = 17,3705037459
Eπιτάχυνση σε g = 1,7706935521

Δεν περιλαμβάνεται η κατακόρυφη επιτάχυνση.
Το ότι το μοντέλο είναι σε κλίμακα αυτό ανεβάζει την επιτάχυνση κατά πολύ πάρα πάνω από 1,77 g αλλά μετριέται διαφορετικά από ότι το μέτρησα εγώ, και βγαίνει από τύπους που εγώ δεν τους ξέρω. ( οι οποίοι συσχετίζουν επιτάχυνση και μάζα ) Αυτούς τους τύπους τους ξέρουν τα εργαστήρια δοκιμών.
Αυτή η επιτάχυνση που έβγαλα είναι επιτάχυνση πραγματικού φυσικού σεισμού.
Αυτό μου το είπε ο καθηγητής.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 25 Απρ 2014 08:58

Θα σας δώσω κάποια θεωρητικά στοιχεία για να κάνετε και να ελέγξετε μόνοι σας τους υπολογισμούς που έκανα.
Το μοντέλο μου εκτελεί μια απλή αρμονική ταλάντωση κατά τον άξονα χ πάνω στον οποίο πηγαινοέρχεται (αγνοούμε την κάθετη κίνηση που είναι μικρή).
Αυτή η παλινδρομική κίνηση δημιουργείται από την κυκλική κίνηση του άκρου του εμβόλου όπου είναι προσαρμοσμένος ο πύρος του ρουλεμάν.
Η ακτίνα αυτού του κύκλου είναι 0,11m και αυτό είναι το πλάτος ταλάντωσης Α. Έτσι κάνει το μοντέλο μου διαδρομή 2Α=0,22m, δηλ πάει από το
ένα ακραίο σημείο στο άλλο σε κάθε μισή στροφή του πύρου.

Μία πλήρης ταλάντωση όμως σημαίνει να κάνει ο πύρος μια πλήρη στροφή, να επανέλθει δηλ. το μοντέλο στην ακραία θέση από όπου ξεκίνησε.
Άρα, αν πούμε ότι ξεκίνησε από το τέρμα πρέπει να επανέλθει στο τέρμα. Κάνει επομένως συνολική διαδρομή 0,22 που πήγε και 0,22 που γύρισε =4Α=0,44 m.
Αν λοιπόν σταθούμε από την πλευρά του μηχανήματος και μετράμε διαδρομές, κάθε προσέγγιση προς το μηχάνημα είναι και μία πλήρης διαδρομή και άρα μία στροφή. Αυτές τις στροφές μετράμε, και τον αντίστοιχο χρόνο τους σε sec. Η συχνότητα (Hz) είναι το κλάσμα: ν=αριθμός τέτοιων πλήρων διαδρομών /αντίστοιχο χρόνο τους.
Η περίοδος της ταλάντωσης Τ, δηλ. ο χρόνος μιάς πλήρους διαδρομής 0,44m είναι Τ=1/ν sec

Σε μια πλήρη στροφή του πύρου, έχουμε μία φορά μέγιστη θετική ταχύτητα κατά την μία κατεύθυνση και μια φορά μέγιστη αρνητική κατά την άλλη.
Εμάς βέβαια μας ενδιαφέρουν οι απόλυτες τιμές τους που είναι ίδιες.
Το ίδιο συμβαίνει και με την επιτάχυνση, αλλά αυτή έχει μέγιστη απόλυτη τιμή όταν η ταχύτητα είναι μηδέν, δηλ. στα άκρα των διαδρομών.

Μέγιστη ταχύτητα και μέγιστη επιτάχυνση υπολογίζονται από την γωνιακή ταχύτητα ω που είναι: ω=2π/Τ.
Άρα: μέγιστη ταχύτητα υ: maxυ=ω*Α=0,11*ω m/sec, μέγιστη επιτάχυνση α: maxα=ω2*Α=0,11*ω2 m/sec2.
Αυτά τα μέγιστα μεγέθη πραγματοποιούνται στιγμιαία.

Αν θέλουμε να πάρουμε την μέση επιτάχυνση, είτε θετική είτε αρνητική, τότε σκεφτόμαστε ότι η ταχύτητα πήγε από το μηδέν στο μέγιστό της
σε χρόνο Τ/4. Άρα η μέση επιτάχυνση είναι κατά προσέγγιση: α=maxυ/(Τ/4)=4*maxυ/Τ=4*0,11.ω2/Τ σε m/sec2.
Αυτό βέβαια δε είναι ακριβές, διότι κατά την στιγμή Τ/4 η α είναι μεγαλύτερη (να μη σας μπλέκω με συνημίτονα και ημίτονα).

Και στις δύο όμως περιπτώσεις για να βρούμε την επιτάχυνση σε g, πρέπει να διαιρέσουμε τις επιταχύνσεις που είναι σε m/sec2 με την Γήινη επιτάχυνση μάζας που είναι 9,81 m/sec για να πούμε ότι έχουμε πετύχει επιτάχυνση τόσων g. Πιστεύω να ήμουν αναλυτικός.
Τι κάνουμε στην πράξη και τι άλλους παράγοντες λαμβάνουμε υπόψη μας, είναι ένα ζητούμενο.?
Αναλυτικά αποτελέσματα πειράματος.
Από το 2,45 λεπτό μέχρι το 2,50 λεπτό μέσα σε 5 δευτερόλεπτα έκανε 10 πλήρεις στροφές.
https://www.youtube.com/watch?v=RoM5pEy7n9Q
Δηλαδή 40 πλήρεις στροφές σε 20 sec
1) Οπότε Πλάτος ταλάντωσης Α= 0,11 m
2) Η συχνότητα (Hz) είναι το κλάσμα: ν=αριθμός τέτοιων πλήρων διαδρομών /αντίστοιχο χρόνο τους. Οπότε 40/20= 2 Hz
3) Ιδιοπερίοδος Η περίοδος της ταλάντωσης Τ, δηλ. ο χρόνος μιάς πλήρους διαδρομής 0,44m είναι Τ=1/ν sec Οπότε 1/2=0,5 sec
4) Γωνιακή ταχύτητα ω είναι: ω=2π/Τ. Οπότε 2Χ3,14/0,5= 12,56
5) Μέγιστη ταχύτητα υ: maxυ=ω*Α=0,11*ω m/sec Οπότε 12,56 χ 0,11= 1,3816 m/sec
6) Mέγιστη επιτάχυνση α: maxα=ω2*Α=0,11*ω2 m/sec2. Οπότε 12,56χ12,56χ0,11= 17,352896
7) Επιτάχυνση σε g 17,352896/9,81= 1,77 g

Δεν περιλαμβάνεται η κατακόρυφη επιτάχυνση.
Το ότι το μοντέλο είναι σε κλίμακα αυτό ανεβάζει την επιτάχυνση κατά πολύ πάρα πάνω από 1,77 g αλλά μετριέται διαφορετικά από ότι το μέτρησα εγώ, και βγαίνει από τύπους που εγώ δεν τους ξέρω. ( οι οποίοι συσχετίζουν επιτάχυνση και μάζα και βγάζουν κάποιες κλίμακες ) Αυτούς τους τύπους τους ξέρουν τα εργαστήρια δοκιμών.
Αυτή η επιτάχυνση που έβγαλα είναι επιτάχυνση πραγματικού φυσικού σεισμού, πάνω σε μικρό μοντέλο κλίμακας 1 προς 7,14
Αυτό μου το είπε ο καθηγητής.
Ο Μεγαλύτερος σεισμός που έγινε ποτέ στον κόσμο, ήταν 2,99 g
Οι ισχυρότερες κατασκευές στην Ελλάδα κατασκευάζονται να αντέχουν 0,36 g
To Δικό μου μοντέλο δοκιμάστηκε σε 1,77 g και δεν έπαθε τίποτα, οπότε δεν ξέρουμε πότε αστοχεί.
Στην Ελλάδα ο μεγαλύτερος που έγινε σεισμός έφθασε σε επιτάχυνση το 1 g
Συσχέτιση με την κλίμακα Mercalli
http://en.wikipedia.org/wiki/Peak_ground_acceleration

Instrumental Intensity, Acceleration (g), Velocity (cm/s), Perceived Shaking, Potential Damage
I ........................... < 0.0017 ............... < 0.1 ....... Not felt ............. None
II-III .................. 0.0017 - 0.014 .... 0.1 - 1.1 .......... Weak .............. None
IV .................... 0.014 - 0.039 ...... 1.1 - 3.4 ......... Light .............. None
V ..................... 0.039 - 0.092 ........ 3.4 - 8.1......... Moderate ........... Very light
VI ....................... 0.092 - 0.18 ........ 8.1 – 16 ......... Strong ........... Light
VII ................. ...... 0.18 - 0.34 .......... 16 – 31......... Very strong ........ Moderate
VIII ...................... 0.34 - 0.65 ......... 31 – 60 ......... Severe ......... Moderate to heavy
IX ..................... ... 0.65 - 1.24 .......... 60 – 116 ....... Violent ........... Heavy
X+ ....................... > 1.24 ........... > 116............... Extreme............. Very heavy

Και όμως οι επιστήμονες με έχουν στην απέξω.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 29 Απρ 2014 19:36

Ο ικανοτικός έλεγχος των κόμβων γίνεται με την σύγκριση αντοχής των ροπών που δημιουργούνται προσθετικά σε όλους τους δοκούς που υπάρχουν στον κόμβο, με την σύγκριση αντοχής των ροπών όλων των υποστυλωμάτων.
Ελέγχονται ως προς την πλαστιμότητα, και την αποφυγή του σχηματισμού μηχανισμού ( μαλακού ορόφου )
Βασικά επιδιώκουμε την ελαστικότητα των κατακόρυφων στοιχείων, τα οποία πρέπει να έχουν την ικανότητα να παραμένουν μέσα στην φάση του ελαστικού φάσματος, και την ικανότητα αυτών να αποδίδουν πίσω την αποθηκευμένη ενέργεια, κατά την σεισμική διέγερση.
Ακόμα πρέπει να επιλέξουμε τα μέρη στα οποία θα επιτρέπεται η δημιουργία πλαστικών αρθρώσεων. Αυτά τα μέρη είναι οι άκρες των δοκών.
Στις κολόνες δεν επιτρέπεται η δημιουργία πλαστικών αρθρώσεων, παρά μόνο στο σημείο κοντά στην βάση, ή στο σημείο που ενώνονται με το στερεό κιβώτιο του υπογείου.
Φυσικά ελέγχουμε και την αντοχή τους στις τέμνουσες, και στην τέμνουσα βάσης.
Σε γενικές γραμμές αυτή είναι η στάθμη της επιστήμης σήμερα, ως προς την αντοχή και τον ικανοτικό σχεδιασμό των κόμβων.
Σύμφωνα με τους σύγχρονους κανονισμούς, ο αντισεισμικός σχεδιασμός των κτιρίων γίνεται με βάση τις απαιτήσεις ικανοτικού σχεδιασμού και πλαστιμότητας. Η αναπόφευκτη ανελαστική συμπεριφορά υπό ισχυρή σεισμική διέγερση κατευθύνεται σε επιλεγμένα στοιχεία και μηχανισμούς αστοχίας. ( στα άκρα των δοκών ) Ειδικότερα, η έλλειψη ικανοτικού σχεδιασμού των κόμβων και η σαφώς περιορισμένη πλαστιμότητα των στοιχείων οδηγούν σε ψαθυρές μορφές αστοχίας.

Η δική μου καινοτόμος πρόταση για ενίσχυση των κόμβων....

Από τα πάρα πάνω που είπα και είναι η στάθμη της επιστήμη, δημιουργούνται σε μένα μερικά ερωτήματα ως προς την αποτελεσματικότητα της μεθόδου σχεδιασμού.

Βασικά σε γενικές γραμμές..
Τα φέροντα δομικά στοιχεία οριζόντια ή κατακόρυφα παραλαμβάνουν ροπές Μ, ορθές δυνάμεις Ν (θλιπτικές ή εφελκυστικές) και τέμνουσες Q.
Σίδερα και σκυρόδεμα συνεργαζόμενα παραλαμβάνουν αυτές τις καταπονήσεις.
Από την άλλη προσπαθείτε να μεταμορφώσετε τα κατακόρυφα στοιχεία σε ελαστικούς κορμούς αποθήκευσης και απόδοσης ενέργειας ( σαν ελατήρια. )
Την ίδια στιγμή επιδιώκεται να σταματήσετε αυτήν την ελαστικότητα με την τοιχοποιία στα φατνώματα η οποία αντιστέκεται και αυτή ελαστικά, παρεμποδίζοντας την ταλάντωση του φέροντα.

Η ερώτησή μου είναι..
Γιατί θέλετε αυτήν την παραμόρφωση η οποία είναι η αιτία όλων αυτών των κακών καταπονήσεων?
Αν σταματούσαμε αυτήν την παραμόρφωση, δεν θα είχαμε κανένα πρόβλημα με τον σεισμό.
Το ερώτημα είναι πως την σταματάμε?
Απάντηση
Η κολόνες σας είναι ελατήρια. Ένα ελατήριο που ταλαντεύετε μόνο με το χέρι μας μπορούμε να το σταματήσουμε.
Δεν μπορούμε όμως να κάνουμε το ίδιο και με την οικοδομή.
Εκτός τα ελατήρια, έχουμε και τα άκαμπτα, ή λιγότερο ελαστικά στοιχεία όπως είναι τα τοιχία.
Φυσικά άκαμπτα τοιχία χρησιμοποιείτε και εσείς.
Αυτά τα άκαμπτα τοιχία, λόγο του ότι είναι άκαμπτα, κατά την ταλάντωση σηκώνουν την βάση τους, και το δώμα τους μονόπλευρα.
( προπαντός αν αυτά τα τοιχία έχουν μικρή βάση )
Αυτό το ανασήκωμα σπάει τους δοκούς.
Για να ενισχύσουμε ικανοτικά τους κόμβους, πρέπει να πακτώσουμε το δώμα του τοιχίου με το έδαφος.
Αυτή η πάκτωση θα ενισχύσει ικανοτικά
α) Την αντίσταση των τοιχίων στην κάμψη, λόγο της αντίδρασης του τένοντα να παραμορφωθεί από την επιβολή των τάσεων κάμψης που του επιβάλει το υποστύλωμα.
β) Τις στροφές στους κόμβους, γιατί απλά δεν θα υπάρχουν πια ροπές στους κόμβους.
Για να υπάρξει η ροπή των κόμβων, πρωταρχικός πρέπει να υπάρξει στροφή των οριζόντιων και κατακόρυφων στοιχείων.
Αν τα κατακόρυφα στοιχεία αδυνατούν να στρέψουν τον κορμό τους διότι είναι πακτωμένα με το έδαφος στο δώμα τους, πως είναι δυνατόν να έχουμε ροπές, τέμνουσες, κάμψις, κλπ στους κόμβους?
Και πέστε ότι αυτά που λέω, δεν είναι σωστά.
Πέστε μου,...που εγώ επηρεάζω με την μέθοδό μου την δική σας μέθοδο να αποδώσει κανονικά?
Αφού η δική μου μέθοδος το μόνο που κάνει είναι να ενισχύει ικανοτικά την δική σας.
Που είναι το πρόβλημα?????

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 08 Μάιος 2014 09:47

Δύο σπουδαία συνδρομητικά τεχνικά επιστημονικά περιοδικά για πολιτικούς μηχανικούς θα δημοσιοποιήσουν σύντομα μεγάλο άρθρο της ευρεσιτεχνίας, που θα συζητηθεί πολύ. Τα περιοδικά είναι skyrodemanet.gr/ και metalkat.gr/
Όλο το άρθρο όπως θα δημοσιευθεί στα τεχνικά επιστημονικά περιοδικά, στο πάρα κάτω link.
www.green-e.gr/m/listing/view/-Antiseismiko-systhma

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 09 Ιούλ 2014 20:13

Φίλοι μου τα νέα της ευρεσιτεχνίας
από νέα πειράματα που έκανα με και χωρίς το αντισεισμικό σύστημα, της ευρεσιτεχνίας
ώστε να βγουν χρήσιμα συμπεράσματα ως προς την αποτελεσματικότητα και χρησιμότητα
της μεθόδου.
1) Το πρώτο πείραμα φέρει το σύστημα της ευρεσιτεχνίας και με πολύ μεγάλη επιτάχυνση δεν έπαθε την παραμικρή ζημιά.
2) Στο δεύτερο πείραμα έχει αφαιρεθεί το σύστημα της ευρεσιτεχνίας, και βίδωσα την βάση του μοντέλου με την σεισμική βάση.
Με πολύ μικρή επιτάχυνση έσπασε λίγο η βάση του μοντέλου στο δεύτερο πείραμα.
3) Και στο τρίτο πείραμα που έκανα δεν υπάρχει το σύστημά μου. Η διαφορά με το δεύτερο είναι ότι σταθεροποίησα ακόμα περισσότερο
την βάση του μοντέλου με την σεισμική βάση για να μπορέσω να το κουνήσω με μεγαλύτερη επιτάχυνση χωρίς να μου φύγει το μοντέλο
πάνω από την βάση.
Το μοντέλο είναι το ίδιο σε όλα τα πειράματα, αλλά μόνο όταν είχε επάνω του την αντισεισμική τεχνολογία που προτείνω αυτό δεν έπαθε τίποτα.
Μόλις αφαίρεσα την αντισεισμική τεχνολογία της ευρεσιτεχνίας, ήταν εμφανείς οι ζημιές που έπαθε και στα δύο πειράματα με μικρή και
μεγάλη επιτάχυνση.
Αυτά τα πειράματα δείχνουν την χρησιμότητα της μεθόδου επί των δομικών κατασκευών, διότι είναι συγκρίσιμα.


Πείραμα με τοποθετημένο το σύστημα της ευρεσιτεχνίας. https://www.youtube.com/watch?v=RoM5pEy7n9Q
image
ΠΕΙΡΑΜΑ ΤΟ ΑΠΟΛΥΤΟ ΑΝΤΙΣΕΙΣΜΙΚΟ ΣΥΣΤΗΜΑ...

Πρώτο Πείραμα χωρίς το σύστημα της ευρεσιτεχνίας, αλλά με βιδωμένη την βάση του μοντέλου,
με την σεισμική βάση. (Έσπασε η βάση του μοντέλου με λίγη επιτάχυνση)
https://www.youtube.com/watch?v=ZsSJJhOfwq0


ΜΟΝΤΕΛΟ ΧΩΡΙΣ ΤΗΝ ΕΥΡΕΣΙΤΕΧΝΙΑ ΒΙΔΟΜΕΝΟ ...

Δεύτερο Πείραμα χωρίς το σύστημα της ευρεσιτεχνίας, με μεγαλύτερη επιτάχυνση. ( τελική κατάρρευση ) 2013 05 03 04 34 26 χωρίς το αντισεισμικό 100% ΚΑΤΑΡΡΕΥΣΗ
https://www.youtube.com/watch?v=l-X4tF9C7SE
Έλεγχος ζημιών μετά το πείραμα https://www.youtube.com/watch?v=sZkCKY0EypM
Ο αξιότιμος καθηγητής κύριος Παναγιώτης Καρύδης ίδρυσε την καλύτερη σεισμική βάση στην Ελλάδα, και διετέλεσε και διευθυντής στα πειράματα για πολλές δεκαετίες.
Τώρα είναι επίτιμος καθηγητής στην σεισμική βάση.

Τόσο ο κύριος Π. Καρύδης όσο και ο Khalid M. Mosalam, PhD, PE Professor of Structural Engineering, Mechanics and Materials Civil and Environmental Engineering University of California Berkeley, ανεγνώρισαν τα πειράματα που έκανα σαν εξαίρετα αποτελέσματα πειραματικών ερευνών.

Μετά την πείρα τόσων ετών που έχουν αυτοί οι εξαίρετοι και ειδικευμένοι καθηγητές πάνω σε πειράματα στις καλύτερες σεισμικές βάσεις των πανεπιστημίων.... πρέπει να τους πιστέψουμε ... πρέπει να πιστέψουμε αυτό που λένε...για τα πειράματα που έκανα?
Η συνέντευξη για την ευρεσιτεχνία στο Zougla.gr
Η τηλεφωνική συνέντευξη του κυρίου Παναγιώτη Καρύδη για την ευρεσιτεχνία στο Zougla.gr
http://www.zougla.gr/greece/article/erg ... resitexnia

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 01 Αύγ 2014 21:27

Ας πάρουμε τέσσερις ίδιους φορείς σε διαστάσεις και οπλισμό.
α)Τον πρώτο απλά τον τοποθετούμε πάνω ή μέσα στη βάση στο έδαφος όπως κάνουν σήμερα.
β)Στον δεύτερο τοποθετούμε κάτω από τις βάσεις μία γεώτρηση μέσα στην οποία σφηνώνουμε μία άγκυρα, η οποία είναι συνδεδεμένη με ένα τένοντα ο οποίος εξέχει ένα μέτρο από το ύψος της θεμελίωσης, ώστε κατά την έκχυση του σκυροδέματος της βάσης να πακτωθεί το έδαφος με την βάση.
γ)Στον τρίτο εκτελούμε την ίδια διαδικασία με τον δεύτερο, με την διαφορά ότι επεκτείνουμε τον τένοντα μέχρι το δώμα, ώστε να πακτωθεί μέσω του μηχανισμού της συνάφειας εξολοκλήρου μέσα στα υποστυλώματα.
δ)Στον τέταρτο φορέα εκτελούμε την ίδια διαδικασία με τον τρίτο, με την διαφορά ότι ο τένοντας περνά τώρα ελεύθερος μέσα από μία σωλήνα ώστε να αποφύγουμε τον μηχανισμό της συνάφειας μεταξύ σκυροδέματος και χάλυβα, και καταλήγει πάνω από το δώμα.
Όταν ο τένοντας καταλήξει πάνω από το δώμα, του τοποθετούμε ένα ή περισσότερους κοχλίες, ώστε οι κοχλίες να σταματούν την άνοδο του δώματος.
Ερώτημα...
Ποιος και γιατί από τους τέσσερις ίδιους φορείς θα έχει καλύτερη σεισμική συμπεριφορά?
Απάντηση.
α) Ο πρώτος φορέας δεν είναι πακτωμένος με το έδαφος, και θα έχει το πρόβλημα του ότι όλοι του οι κόμβοι θα δημιουργήσουν στροφές και οι κορμοί των φερόντων στοιχείων του θα δημιουργήσουν καμπυλότητες.
Αν οι καμπυλότητες είναι μέσα στην ελαστική περιοχή, κανένα πρόβλημα.
Αν όμως οι μετατοπίσεις του σεισμού είναι μεγάλες, τότε θα περάσει στην ανελαστική περιοχή με αστοχίες.
Η μη πάκτωση των υποστυλωμάτων με το έδαφος, οδηγεί στο ανασήκωμα των βάσεων και του δώματος και την αλλαγή της κλίσης των κατακόρυφων πλευρών των, και σε συνδυασμό με τα αστήρικτα στατικά φορτία δημιουργούν τις στροφές και τις καμπυλότητες.
Αυτές δημιουργούν οριζόντιες τέμνουσες στα υποστυλώματα, και κατακόρυφες τέμνουσες στις δοκούς.
Δηλαδή και τα υποστυλώματα και οι δοκοί, καταπονούνται στις πιο αδύνατες τομές τους ( τις πιο μικρές )
Υπάρχει μεγάλη ανάγκη στο να εκ τρέψουμε τις καταπονήσεις σε ισχυρές τομές. Χρειάζεται αμέσως η αλλαγή του αντισεισμικού σχεδιασμού ή τουλάχιστον η ενσωμάτωση των προδιαγραφών της ευρεσιτεχνίας για να επιτευχθεί ο στόχος αυτός.

Απάντηση

β,γ) Η β, γ, και δ μέθοδος των πάρα πάνω αναφερθέντων φορέων εμπίπτουν στις μεθόδους της ευρεσιτεχνίας.
Και με τις τρις αυτές μεθόδους επιχειρείτε για πρώτη φορά παγκοσμίως η ένωση της κατασκευής με το έδαφος.
Όλες μαζί η β,γ,και δ, είναι πολύ καλύτερες από την πρώτη μέθοδο.
Όμως υπάρχουν και μεγάλες διαφορές μεταξύ των, τόσο στο κόστος κατασκευής όσο και στην αποτελεσματικότητά τους.
Αυτές τις διαφορές κόστους και απόδοσης θα εξετάσουμε πάρα κάτω
Η όποια ένωση κατασκευής και εδάφους και αν γίνει, εκτρέπει τις πλάγιες φορτίσεις του σεισμού στις κατακόρυφες τομές των υποστυλωμάτων.
Μεγαλύτερες τομές, μεγαλύτερες αντοχές και εξισώσεις ισορροπίας.
Η β μέθοδος το κατορθώνει λιγότερο από ότι η γ μέθοδος, και η δ περισσότερο από την γ
Με την δ μέθοδο μπορούμε να σταματήσουμε όλη την ταλάντωση, με την γ μέθοδο λιγότερο, και ακόμα λιγότερο με την β μέθοδο.
Δεδομένου ότι η ταλάντωση είναι παραμόρφωση και αστοχία, καταλαβαίνουμε ότι η δ μέθοδος είναι η καλύτερη, αλλά και πιο ακριβή, διότι είναι η μόνη που χρειάζεται να περάσει μέσα από σωλήνα ώστε να αποφύγουμε την συνάφεια του τένοντα με το σκυρόδεμα.
Γιατί είναι καλύτερα να αποφύγουμε την συνάφεια του σκυροδέματος με τον τένοντα?
Διότι ο μηχανισμός της συνάφειας δημιουργεί ακτινωτές τέμνουσες στην διεπιφάνεια σκυροδέματος και χάλυβα, και το σκυρόδεμα δεν έχει καλές αποδώσεις και προδιαγραφές προς αυτές τις τέμνουσες, όπως έχει ο χάλυβας.
Οπότε βάζουμε δύο διαφορετικά υλικά με διαφορετικές προδιαγραφές να συνεργασθούν.
Αυτό σημαίνει ότι υπάρχει μειωμένη απόδοση της συνάφειας, η οποία περιορίζετε στις αντοχές προδιαγραφών του σκυροδέματος,
και όχι στις προδιαγραφές αντοχής του χάλυβα.
Με λίγα λόγια πολύς χάλυβας για μικρό καλό.

Τι γίνεται όταν δεν υπάρχει συνάφεια του τένοντα με το σκυρόδεμα?
Όταν η γωνιακή επιτάχυνση αναγκάζει το δώμα του υποστυλώματος να σηκωθεί, η μόνη αντίδραση του τένοντα προέρχεται από τον κοχλία που είναι πάνω από το δώμα, και είναι βιδωμένος πάνω στον τένοντα.
1) Σε αυτήν την μέθοδο δεν έχουμε καταπόνηση του σκυροδέματος και του τένοντα με ακτινωτές τέμνουσες στην διεπιφάνειά τους όπως έχουμε με την συνάφεια, διότι ο τένοντας ολισθαίνει μέσα στην σωλήνα που περνά.
2) Σε αυτήν την μέθοδο το σκυρόδεμα καταπονείται μόνο με θλίψη στο δώμα λόγο της άρνησης του κοχλία προς το σκυρόδεμα του δώματος να ανασηκωθεί.
Ξέρουμε ότι αν κάπου αντέχει πολύ το σκυρόδεμα αυτό είναι η θλίψη.
Οπότε η καταπόνηση σε θλίψη του σκυροδέματος πάνω στο δώμα είναι εντός των προδιαγραφών του.
3) Ο χάλυβας του τένοντα δίνει το 100% της αντοχής του σε εφελκυσμό πριν αστοχήσει διότι δεν υπάρχει πλέων η συνάφεια η οποία περιορίζει την ωφέλιμη αντοχή του στις προδιαγραφές αντοχής του σκυροδέματος στις τέμνουσες.
4) Με την συνάφεια θα υπάρχει πάντα μια ελαστικότητα στα υποστυλώματα, έστω και αν αυτά είναι ενωμένα στην βάση με το έδαφος.
Με ελεύθερο τον τένοντα να διαπερνά τα υποστυλώματα και την παρεμπόδιση του κοχλία στο δώμα, αυτή η ελαστικότητα του υποστυλώματος μικραίνει πιο πολύ διότι... κάθε παραμόρφωση του κορμού του τένοντα η οποία επιβάλετε από την καμπυλότητα των υποστυλωμάτων, μετατρέπεται σε θλιπτική αντίδραση στο δώμα.
Ο τένοντας αρνείται να παραμορφωθεί εμποδίζοντας και το υποστύλωμα να λυγίσει.
Η θλίψη που δέχεται το υποστύλωμα στο δώμα το κάνει πιο άκαμπτο και ικανό στο να παραλάβει τέμνουσες.
Φυσικά όλα αυτά για να ισχύσουν χρειάζεται κατακόρυφη προένταση σε επιμήκη υποστυλώματα ( - ) με προένταση στα δύο άκρα για να δουλεύει όλη η διατομή σε αμφίπλευρες καταπονήσεις.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 10 Αύγ 2014 16:45

α) Η συνάφεια των υλικών του σκυροδέματος μετά από θλιπτικές και άλλες φορτίσεις τελικά καταλήγει να καταπονείται με τέμνουσες που προσπαθούν να διαχωρίσουν τα αδρανή υλικά που το αποτελούν.
β) Οι ροπές ( στροφές ) στους κόμβους των φερόντων στοιχείων καταλήγουν τελικά σε τέμνουσες.
γ) Η συνάφεια μεταξύ σκυροδέματος και χάλυβα, υπό την τάση εφελκυσμού καταλήγει σε ακτινωτή καταπόνηση διατμητικών τάσεων στην διεπιφάνεια αυτών.
δ) Η καμπυλότητα των στοιχείων γενικά καταλήγει να καταπονείται από τέμνουσες.
Όλες γενικά οι φορτίσεις είτε είναι στατικές είτε είναι σεισμικές καταλήγουν σε τέμνουσες επί των διατομών των φερόντων στοιχείων, άσχετα αν αυτές δημιουργούνται από τάσεις εφελκυσμού, θλίψης , στρέψης κ.λ.π.
Οι φορτίσεις είτε είναι στατικές είτε είναι σεισμικές πάντα θα υπάρχουν.
Τι μπορούμε να κάνουμε ώστε να υπάρξει μεγαλύτερη αντοχή στις διατομές των φερόντων στοιχείων από αυτή που έχουν σήμερα?
Το πρώτο που μπορούμε να κάνουμε, είναι να εφεύρουμε ισχυρότερα υλικά, με λιγότερο ιδικό βάρος, και μεγαλύτερη αντοχή σε πρόσφυση.
Αυτό είναι έρευνα της νανοτεχνολογίας και των χειμικών.
Η έρευνά μου επικεντρώνεται σε άλλους πιο πρακτικούς παράγοντες
α) Παράγοντας είναι η εκτροπή των σεισμικών φορτίσεων που πάντα θα υπάρχουν σε πιο ισχυρές διατομές. ( Άλλο να σου εφαρμόζουν μία κατακόρυφη δύναμη στο κεφάλι, και άλλο να σου εφαρμόζουν την ίδια οριζόντια δύναμη πάνω στο μάτι σου )
Άλλη αντοχή έχει ένα υποστύλωμα όταν δέχεται μία οριζόντια φόρτιση, και άλλη όταν δέχεται μία ίδια κατακόρυφη φόρτιση.
Η εφαρμογή μιας φόρτισης στο δώμα του υποστυλώματος εκτρέπει την φόρτιση του σεισμού στην κατακόρυφη και πιο ισχυρή διατομή του υποστυλώματος.
β) Παράγοντας. Ο μόνος σύμμαχος προς τις στατικές και σεισμικές φορτίσεις που έχουμε είναι το έδαφος των βάσεων.
Αν η κατασκευή χάσει το έδαφος κάτω από τις βάσης, η κατασκευή θα αστοχήσει.
Εδώ υπάρχει ένα μεγάλο πρόβλημα. Η κατασκευή χάνει στην κυριολεξία το έδαφος κάτω από την βάση στην διέγερση του σεισμού …. άσχετα αν εμείς δεν το βλέπουμε.
Η ταλάντωση της κατασκευής την σηκώνει μονόπλευρα εναλλάξ.
Γιατί όμως δεν το βλέπουμε να συμβαίνει αυτό στην πράξη?
Απλά γιατί τα σεισμικά φορτία συνεργάζονται με τα στατικά, για να εξοντώσουν τον μόνο σύμμαχό μας το έδαφος.
Τα σεισμικά φορτία σηκώνουν την κατασκευή μονόπλευρα, και τα στατικά αστήριχτα πια φορτία τις δίνουν μία και πάει κάτω, και δεν σηκώνεται ποτέ από το έδαφος.
Οι κόμβοι όμως έχουν πάθει την πλάκα τους σε στρέψης … γιατί οι φορτίσεις υπάρχουν αλλά δεν φαίνονται παρά μόνο επί του αποτελέσματος της αστοχίας.
Η εφαρμογή μιας φόρτισης στο δώμα του υποστυλώματος σταματά την καταστροφική συνεργασία των στατικών και σεισμικών φορτίσεων διότι καθηλώνοντας τις βάσεις στο έδαφος, δεν χάνουμε τον πολύτιμο σύμμαχό μας που είναι το έδαφος της βάσης.
Στην πραγματικότητα όταν υπάρχει ταλάντωση στο Π του πλαισίου αυτό που συμβαίνει είναι ...
α) Και τα δύο υποστυλώματα χάνουν την εκκεντρότητα ανασηκώνοντας την βάση τους, και δημιουργούν στροφές στους δύο αντικριστούς κόμβους.
Για αυτό υπάρχει όριο εκκεντρότητας, δηλαδή όριο περιοχής πεδίλου που ανασηκώνεται από την ροπή ανατροπής.

Για να περιορίσουμε τις στροφές στη βάση βάζουμε ισχυρές πεδιλοδοκούς για τα υποστυλώματα,.... για τα τοιχία λόγω των μεγάλων ροπών που κατεβάζουν είναι πρακτικά αδύνατη η παρεμπόδιση της στροφής με τον κλασικο τρόπο κατασκευής.
β) Αυτή η στροφή στους κόμβους στο Π του πλαισίου, έχει σαν αποτέλεσμα όταν το ένα υποστύλωμα σηκώνει προς τα επάνω το ένα άκρο της δοκού, την ίδια στιγμή το άλλο υποστύλωμα στο άλλο άκρο της δοκού το κατεβάζει βίαια προς τα κάτω.
Αυτό καταπονεί την δοκό με τάσεις διαφορετικής κατεύθυνσης στα άκρα, παραμορφώνοντας τον κορμό της σε σχήμα S

Καλώ όλους τους μηχανικούς να μου πουν αν έχουν κάποια καλύτερη λύση να προτείνουν από την δική μου πρόταση, ώστε να σταματήσουμε αυτήν την παραμόρφωση της δοκού και των υποστυλωμάτων.
Δηλαδή να εξαφανίσουμε όλες τις στροφές στους κόμβους.
ΛΥΣΗ
Κατακόρυφη προένταση μεταξύ δώματος και εδάφους σε επιμήκη υποστυλώματα ( - ) με προένταση στα δύο άκρα για να δουλεύει όλη η διατομή σε αμφίπλευρες καταπονήσεις, δημιουργούν εναλλάξ στα άκρα μια αντίδραση στην άνοδο του δώματος, και μία άλλη στο αντικριστώ κάτω μέρος του Π της βάσης.
Αυτό σταματά την ταλάντωση,.. την μεγαλύτερη μετατόπιση του δώματος, την διαφορά φάσης και πλάτους ταλάντωσης των διαφόρων καθ ύψος πλακών,..και τις στροφές στους κόμβους.
Και που πάει όλη αυτή η πλάγια φόρτιση του σεισμού?
Ως τώρα αυτή η φόρτιση μεταλλάσσεται σε στροφές των κόμβων.
Η αντίδραση στο δώμα και στο αντικριστό Π της βάσης εκτρέπει την πλάγια φόρτιση του σεισμού πάνω στην κατακόρυφη τομή του τοιχίου.
Επιτέλους καταλάβετε αυτό το απλό στοιχείο αντισεισμικού σχεδιασμού που σας έλειπε, και είναι το μόνο υπεύθυνο για τις παραμορφώσεις και αστοχίες όλων των δομικών έργων.
Ενώ πακτώνεται όλους τους κόμβους της κατασκευής, ( και καλά κάνετε ) είχατε ξεχάσει να ενώσετε τους κόμβους του εδάφους και των βάσεων.
http://metalkat.gr/index.php?option=com ... Itemid=102

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευση από seismic » 10 Αύγ 2014 16:47

Ας μιλήσουμε αναλυτικά για την οικονομία που επιτυγχάνει η ευρεσιτεχνία στις κατασκευές.
1)Όλα τα προκατασκευασμένα από οπλισμένο σκυρόδεμα έχουν το καλό της οικονομικής κατασκευής λόγω του ότι είναι βιομηχανοποιημένα, εν σχέση με τις συμβατικές κατοικίες.
Η διαφορά κόστους ανάμεσά τους κυμαίνετε από 30 με 50%
Δεν τα βλέπουμε όμως να κατασκευάζονται μέσα στην πόλη που τα κτήρια είναι πολυώροφα, διότι είναι άκαμπτα, και η ταλάντωση που τους προκαλεί ο σεισμός σε συνδυασμό με τα μεγάλα στατικά φορτία που έχουν τους δημιουργούν μεγάλα λοξά κρακ πάνω στην τοιχοποιία, η οποία είναι και ο φέροντας οργανισμός.
Για τον λόγο αυτό δεν μπορούν να κατασκευαστούν με πολλά πατώματα, όταν οι περιοχή έχει μεγάλη σεισμική δραστηριότητα.
Ο σχεδιασμός τους περιορίζετε σε ισόγειο και πρώτο όροφο για τους πάρα πάνω λόγους.
Για αυτό τον λόγο βλέπουμε να έχουν μεγάλη εμπορευσιμότητα στα περίχωρα της Αθήνας όπου εκεί έτσι και αλλιώς δεν επιτρέπεται η δόμηση πάνω από δύο ορόφους.
Αν έχεις ένα οικόπεδο μέσα στην Αθήνα που επιτρέπεται η κατασκευή δέκα ορόφων δεν θα βάλεις ποτέ προκατασκευασμένο που η πολεοδομία του επιτρέπει μόνο δύο ορόφους, γιατί θα χάσεις όλους τους άλλους οκτώ ορόφους.
Αν πειραματικά αποδείξω ( που το απέδειξα είδη με τα πειράματα ) ότι με την τοποθέτηση της ευρεσιτεχνίας μου μπορείς χωρίς κανένα σεισμικό κίνδυνο να κατασκευάσεις προκατασκευασμένα δέκα ορόφων αυτό θα είναι η επανάσταση στις κατασκευές.
Το κόστος των κατασκευών στις πόλεις θα πέσει στο 30 με 50% φορώντας την ευρεσιτεχνία μου.
Η ταχύτητα των κατασκευών θα γίνει πολύ γρήγορη, με μεγαλύτερη ασφάλεια, και μεγαλύτερη αντισεισμική προστασία.
2)Από την στιγμή που η ευρεσιτεχνία βελτιώνει το έδαφος θεμελίωσης, δεν είναι ανάγκη να σκάψουμε πολύ για να βρούμε σταθερό έδαφος, οπότε έχουμε μεγάλη οικονομία στις εκσκαφές, και δεν υπάρχει η ανάγκη κατασκευής μεγάλων διαστάσεων της βάσης, οπότε έχουμε και οικονομία στα κυβικά σκυροδέματος.
3) Μία βάση γίνεται μεγάλη για δύο λόγους. Α) Για την παραλαβή των φορτίων, και β) σε κατασκευές γεφυρών και ανεμογεννητριών με ψιλό κέντρο βάρους και φορτία ανέμου, για την παραλαβή αυτών των πρόσθετων πλάγιων φορτίσεων.
Η διάσταση θεμελίωσης θα μειωθεί με την ευρεσιτεχνία, διότι για πρώτη φορά θα υπάρξει πάκτωση του έργου με το έδαφος.
4) Αν η ευρεσιτεχνία καταργεί τις στροφές στους κόμβους, τότε έχουμε την δυνατότητα αφαίρεσης οπλισμού ο οποίος προοριζόταν για την παραλαβή αυτών των φορτίσεων.
5) Σε πολύ ψιλές και ελαφριές κατασκευές είναι πιο πολύ από απαραίτητο το σύστημα για την παραλαβή των φορτίσεων του αέρα.
6) Η απόλυτη προστασία και ακαμψία μιας κατασκευής που φέρει την ευρεσιτεχνία, σημαίνει καμία παραμόρφωση, οπότε καμία αστοχία, καμία επισκευή μετά το σεισμό.
Αυτό είναι πολύ μεγάλη οικονομία σε κόστος, αλλά και πολύ πρακτικό για νοσοκομεία γέφυρες και έργα γενικά που έχουν να κάνουν με δημόσιες πολυσύχναστες κατασκευές, οι οποίες δεν επιτρέπουν καθυστερήσεις επισκευών.
7) Το κόστος ( ασφάλισης ) των κατασκευών θα μειωθεί πάρα πολύ.
Όλα αυτά τα καλά της ευρεσιτεχνίας προσφέρουν οικονομία και ασφάλεια στις κατασκευές.

Άλλη απάντηση δείνω εγώ, και άλλη ο κύριος Καθηγητής Π. Καρύδης.
Δες στο βίντεο την δική μου απάντηση, και άκουσε στο AUDIO .. την τηλεφωνική συνέντευξη του Καθηγητή για το κόστος. Δες εδώ.. http://www.zougla.gr/greece/article/erg ... resitexnia

Ο κ. Καρύδης ξέρει καλά την πιάτσα και πόσο δύσκολα γίνονται δεκτά κάποια πράγματα μέχρι να αποδειχθούν ικανά να ανατρέψουν τα καθιερωμένα.
Εγώ όμως ως ερευνητής που κάνω την πρόταση και την παρουσίαση, θα πρέπει να δείξω στους άλλους ότι έχω κάνει και τέτοιες εκτιμήσεις
και έχω συγκριτικά αποτελέσματα. Φαίνεται έτσι ότι η δουλειά είναι σχετικά πλήρης και ψαγμένη από διάφορες πλευρές.

Απάντηση