Το απόλυτο αντισεισμικό σύστημα

Θέματα πολεοδομίας, δομικών έργων, ρυθμίσεις αυθαιρέτων κλπ
seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 24 Δεκ 2012 16:20

Καλώς σας βρήκα φίλοι μου, και Χρόνια Πολλά. :)
Θέλω να σας πω την ιδέα μου για ένα αντισεισμικό σύστημα που ανακάλυψα, καθώς και νέα στοιχεία πάνω στην σεισμική τεχνολογία των δομικών έργων.

Τα πειράματα δε γίνονται μόνο μέσα στα εργαστήρια, ούτε καν στον φυσικό κόσμο που μας περιβάλλει, προκαλώντας μας συνεχώς να λύσουμε τα μυστήριά του. Τα πειράματα γίνονται μέσα...
στο νου των ανθρώπων πρώτα από όλα κι από κει ξεκινούν το ταξίδι τους για να δοκιμαστούν και να εφαρμοστούν οπουδήποτε αλλού.
Κάποια όμως από αυτά, παραμένουν εκεί που γεννήθηκαν: στη χώρα του νου.
Δεν είμαι μηχανικός, είμαι εργοδηγός δομικών έργων.

Έτσι ξεκίνησαν όλα πριν από 5 χρόνια.
Mια μέρα έβλεπα τηλεόραση με θέμα εκπομπής ...γιατί οι παγόδες στην Κίνα δεν πέφτουν κατά την διάρκεια του σεισμού.Ένας μηχανικός παρατήρησε ότι ο κύριος λόγος ήταν ένας κεντρικός κορμός δένδρου που διαπερνούσε στο κέντρο τις ασύνδετες κατά τα άλλα παγόδες.Την ώρα αυτή την προσοχή μου τράβηξε μια επιτραπέζια σιντιέρα (αυτές με το κεντρικό στέλεχος) Η σκέψη μου εκείνη την στιγμή πήγε στην βίδα και το ούπα. Αν δημιουργούσα προένταση στο στέλεχος της σιντιέρας (ανελκυστήρα ή σταυροειδή κολόνα) με ένα μηχανισμό με το έδαφος ,και δημιουργούσα δύο ραντιεφ βάσεις ( κοιτόστρωση )με ελαστικά μεταξύ των , είχα λύση το πρόβλημα,της συμπεριφοράς των φορτίσεων του σεισμού ,στον υφιστάμενο σκελετό τού κτιρίου,ως πρός τον οριζόντιο και κάθετο άξονά του.
Και έκανα αυτό στο βίντεο. http://www.youtube.com/watch?v=KPaNZcHBKRI.

Το τεύχος Μεταλλικές κατασκευές που περιλαμβάνει την δημοσίευση του θέματος αυτού
ΑΡΧΕΙΟ ΤΕΥΧΩΝ http://metalkat.gr/index.php?option=com ... &Itemid=66

Είναι το τεύχος 1 ον του 2012 Διαβάστε το εξώφυλλο κάτω κάτω έχει τον τίτλο.
( Το απόλυτο αντισεισμικό σύστημα μεταλλικών σύμμεικτων και άλλων δομικών έργων )

ΑΡΘΡΟ

Ιωάννης Λυμπέρης
Εργοδηγός Δομικών Εργων.
Σύντομη περιγραφή της εφεύρεσης
Ο υδραυλικός ελκυστήρας δομικών έργων της παρούσας
εφεύρεσης καθώς και ο τρόπος κατασκευής των δομικών
κατασκευών χρησιμοποιώντας τον υδραυλικό ελκυστήρα της
παρούσας εφεύρεσης έχουν ως κύριο σκοπό την ελαχιστοποί-
ηση των προβλημάτων που σχετίζονται με την ασφάλεια των
δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσι-
κών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι
και οι πολύ ισχυροί πλευρικοί άνεμοι. Σύμφωνα με την εφεύ-
ρεση αυτό επιτυγχάνεται με μια συνεχή προένταση (έλξη) της
δομικής κατασκευής προς το έδαφος και του εδάφους προς
την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα. Αυτή τη
δύναμη προέντασης την εφαρμόζει ο μηχανισμός του υδραυ-
λικού ελκυστήρα δομικών έργων. Αυτός αποτελείται από ένα
συρματόσχοινο το οποίο διαπερνά ελεύθερο στο κέντρο τα κά-
θετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το
μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του είναι
πακτωμένο με ένα μηχανισμό τύπου άγκυρας που πακτώνεται
στο ύψος της θεμελίωσης στα πρανή μιάς γεώτρησης και δεν
μπορεί να ανέλθει. Στο επάνω μέρος του, το συρματόσχοινο,
είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο
οποίος το έλκει με μία συνεχή δύναμη ανόδου. Η ασκούμενη
έλξη στο συρματόσχοινο από τον υδραυλικό μηχανισμό και η
αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτω-
μένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη
στο δομικό έργο.
Άρθρο
ΕΥΕΡΓΕΤΙΚΑ ΑΠΟΤΕΛEΣΜΑΤΑ ΤΗΣ ΠΡΟΕΝΤΑΣΗΣ
Κατά την διέγερση του σεισμού ο φέρον οργανισμός (σκελετός
οικοδομής Μεταλλικός, Σύμμεικτος, ή από οπλισμένο σκυρό-
δεμα) με την σημερινή μέθοδο κατασκευής παρουσιάζει προ-
βλήματα τα οποία ευελπιστώ να λύσω με την ευρεσιτεχνία
Ποια είναι αυτά.
Τέμνουσες. Τι είναι και που υφίστανται πάνω στον
σκελετό της οικοδομής.
Οι τέμνουσες είναι δύο αντίθετες δυνάμεις, των οποίων οι
άξονες τους είναι παράλληλοι και περνούν ο ένας πλησίον του
άλλου, όπως π.χ το ψαλίδι.
Στον σκελετό οι τέμνουσες υφίστανται σε πολλά σημεία του.
Το κυριότερο σημείο που οι τέμνουσες είναι ψαθυρές είναι στο
κάτω μέρος της κολώνας του ισογείου, κοντά στο σημείο που
ενώνεται με τη βάση.
Ερώτηση...γιατί σε εκείνο το σημείο οι τέμνουσες είναι πιο
ψαθυρές?
Απάντηση...Διότι ο σεισμός έχει μια φορά επιτάχυνσης που τη μεταδίνει
στη βάση της κολώνας, διότι αυτή είναι θαμμένη στο έδαφος,
και το έδαφος την αναγκάζει να κινηθεί στον ρυθμό της επιτά-
χυνσης και φοράς του σεισμού.
Ο σκελετός αντιδρά σε αυτήν την κίνηση, λόγω αδράνειας και
στο κάτω σημείο της κολώνας του ισογείου δημιουργείται η τέμνουσα.
Το κάτω σημείο της κολώνας του ισογείου είναι πιο ψαθυρό,
για τρεις κύριους λόγους.
1) διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του
φέροντος, από ότι έχουν να διαχειρισθούν οι άλλες κολω-
νες των πάνω ορόφων,
2) διότι έχει να διαχειρισθεί περισσότερες οριζόντιες φορτί-
σεις του σεισμού
3) διότι δεν υπάρχει καθόλου ελαστικότητα στο κάτω σημείο
της κολώνας του ισογείου, η οποία χρησιμεύει για την
απορρόφηση της ενέργειας του σεισμού, ενώ αυτή η ελα-
στικότητα υπάρχει στις πάνω κολώνες.
Οπότε για τους τρεις λόγους που ανέφερα συμπεραίνουμε ότι
οι τέμνουσες σε αυτές τις κολώνες του ισογείου είναι μεγα-
λύτερες από ότι είναι στις κολώνες των πάνω ορόφων, διότι
διαχειρίζονται μεγαλύτερες οριζόντιες και κάθετες φορτίσεις
κατά την διέγερση του σεισμού.
Τι κάνει η ευρεσιτεχνία για να λύσει το πρόβλημα της αστοχίας
που προκαλούν οι τέμνουσες στις κολώνες του ισογείου?
Ο μηχανισμός του υδραυλικού ελκυστήρα εφαρμόζει κάθετη
προένταση μεταξύ εδάφους δώματος. Ξέρουμε ότι η προέντα-
ση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντο-
χής των κάθετων στοιχείων ) έχει πολύ θετικά αποτελέσματα,
καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε και άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.
Oι συντελεστές που καθορίζουν τη σεισμική συμπεριφορά
των κατασκευών είναι πολυάριθμοι, και εν μέρει πιθανοτικού
χαρακτήρα. (Άγνωστη η διεύθυνση του σεισμού, άγνωστο
το ακριβές περιεχόμενο των συχνοτήτων της σεισμικής διέ-
γερσης, άγνωστη η διάρκειά της.) Ακόμα η μέγιστες πιθανές
επιταχύνσεις που δίδουν οι σεισμολόγοι, έχουν πιθανότητα
υπέρβασης, μεγαλύτερης του σχεδιαζόμενου 10%
Ο συσχετισμός των ποσοτήτων (αν μπορούμε να το δούμε
έτσι) «αδρανειακές εντάσεις - δυνάμεις απόσβεσης - ελαστικές
δυνάμεις - δυναμικά χαρακτηριστικά κατασκευής - αλληλεπί-
δραση εδάφους κατασκευής - επιβαλλομενη κίνηση εδάφους»
είναι μη γραμμικής κατεύθυνσης , και ανεξερεύνητες στη δυ-
ναμική των κατασκευών, με μη προφανές περιεχόμενο.
Συμπέρασμα
Η προένταση, (γενικά η θλίψη) αυξάνει την ικανότητα των
κάθετων στοιχείων ως προς τις τέμνουσες, που προκαλούν οι
φορτίσεις του σεισμού.
Εκτός από τις τέμνουσες που αναφέραμε πάρα πάνω, που
κατά κύριο λόγο εφαρμόζονται στα στοιχεία του ισογείου, οι
τέμνουσες εμφανίζονται και σε άλλα σημεία του φέροντος ορ-
γανισμού
Όπως, στους κόμβους (γωνίες) που σχηματίζονται στο σημείο
ένωσης, της κολώνας με την δοκό, ή της δοκού με την πλάκα,
ή της βάσης με την κολόνα, ή της πεδιλοδοκού με τη βάση, ή
της κοιτόστρωσης με την κολώνα.
Ποια είναι η αιτία που προκαλεί πρόσθετες τέμνουσες στους
κόμβους που αναφέραμε?
Ο πρόσθετος λόγος είναι η ταλάντωση, που επέρχεται στον
φέροντα σκελετό (κυρίως στον πολύ ψηλό σκελετό ) κατά τον
σεισμό.
Τι προβλήματα δημιουργεί η ταλάντωση στο κτήριο???
Αυτό είναι ένα μεγάλο ερώτημα, που για να απαντηθεί πρέπει
πρώτα να πούμε ότι η συχνότητα του κτηρίου αν είναι ίδια με
τη συχνότητα του σεισμού, τότε έχουμε συντονισμό
που δημιουργεί την μεγάλη ταλάντωση.
ΜΙΑ ΑΛΛΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗΝ ΣΕΙΣΜΙΚΗ
ΜΗΧΑΝΙΚΗ
Τι παθαίνει ο σκελετός της οικοδομής κατά την ταλάντωση
προερχόμενη από τις φορτίσεις του σεισμού και του αέρα?
Ας εξετάσουμε απλά βάση των νόμων της φυσικής, τα φορτία
που δέχεται ο σκελετός της οικοδομής κατά τη διέγερση του
σεισμού.
α) Αδράνεια.
Στα σώματα αρέσει να εξακολουθούν να κάνουν αυτό που
κάνουν.
Αν είναι ακίνητα, τους αρέσει να μένουν ακίνητα.
Αν κινούνται τους αρέσει να συνεχίζουν να κινούνται.
Συμπέρασμα. Όταν ο σεισμός κινείται κατά μία κατεύθυνση,
ο σκελετός της οικοδομής αντιδρά σε αυτήν την κίνηση, λόγω
της αδράνειας.
Αυτή η αντίδραση δημιουργεί τις τέμνουσες του ισογείου.
Αυτή η αντίδραση είναι που προκαλεί και την ταλάντωση, η
οποία εξαρτάται από την ιδιοσυχνότητα του σεισμού και του
κτιρίου.
Αυτή η ταλάντωση τείνει να ανατρέψει και τον φέροντα σκελε-
τό με πολύ ψηλό κέντρο βάρους.
Δηλαδή ο φέροντας (κολώνες, δοκάρια, πλάκες) σαν δομική
οντότητα που του την προσφέρουν οι κόμβοι (γωνίες) αντιδρά
σε αυτή την ταλάντωση στους κόμβους.
Τι φορτία δέχονται οι κόμβοι κατά τη διέγερση του σεισμού?
Τα κύρια φορτία που δέχονται είναι δύο:
α) Την αδράνεια της μάζας (της πλάκας, των πραγμάτων, της
τοιχοποιίας,) τα οποία ονομάζουμε οριζόντιες φορτίσεις.
β) Τα φορτία της κατασκευής (το ίδιο βάρος της πλάκας των
πραγμάτων, της τοιχοποιίας) τα οποία ονομάζουμε κάθετες
φορτίσεις.
Ας εξετάσουμε τώρα πως ενεργούν πάνω στα στοιχεία που
αποτελούν τον κόμβο, οι οριζόντιες και οι κάθετες φορτίσεις.
Ένας κόμβος με γωνία 90 μοιρών για να παραμείνει ακέραιος,
πρέπει κατά τον σεισμό, να διατηρήσει την γωνία του [κόμβου
(Γ)] στις ίδιες μοίρες.
Η ταλάντωση όμως κατά τον σεισμό, όπως ξέρουμε, αλλάζει
την κλίση της κολώνας, και από κατακόρυφος που ήταν ο άξο-
νάς της, αλλάζει μερικές μοίρες ( εναλλάξ του κάθετου άξονα )
Η κολόνα κατά τη φάση που η κλίση της αλλάζει, αναγκάζει
μέσω του κόμβου που την ενώνει με τα άλλα στοιχεία το δοκό
να μετακινήσει και αυτή τον οριζόντιο άξονα της μερικές μοί-
ρες προς τα πάνω.
Εδώ υπάρχει το πρόβλημα του φέροντα κατά την ταλάντωση,
διότι τη στιγμή που η δοκός δέχεται φορτία με τάση ανόδου
από την κολόνα, τότε έρχεται σε αντίθεση με τα καθοδικά
φορτία του βάρους του κτηρίου.
Τα καθοδικά φορτία υπερνικούν τα φορτία ανόδου της δοκού,
με αποτέλεσμα η δοκός να αναγκάζεται να παραμείνει οριζό-
ντια.
Η κολώνα όμως, δεν παραμένει οριζόντια, (αλλάζει μερικές
μοίρες ο κάθετος άξονας της).
Το αποτέλεσμα είναι ο κόμβος που προσδίδει δομική οντότητα
στα στοιχεία αυτά να τείνει από 90 μοίρες που είναι, να μεταβάλλεται
, εναλλάξ κατά την ταλάντωση,και να καταπονείται με τέμνουσες.
Ο κόμβος όμως είναι πολύ άκαμπτος και γερός, και αντί να α
λάξει μοίρες, μεταδίδει τα καθοδικά και οριζόντια φορτία στις
ελαστικές διατομές των στοιχείων (διατομή κάτοψης κολόνας,
διατομή δοκού και πλάκας) δημιουργώντας ροπές, όπου αυτές
δημιουργούν τις τέμνουσες.
Οπότε στην πράξη δεν σπάει ο κόμβος, αλλά το πιο ψαθυρό
στοιχείο λίγο πιο πέρα από τον κόμβο.
Την ψαθυρότητα τη δημιουργεί η αντίθεση των φορτίων, στο
λαιμό της κολώνας και της δοκού, δημιουργώντας τις τέμνου-
σες.
Πιο είναι πιο ψαθυρό στοιχείο, η κολώνα ή η δοκός?
Φυσικά είναι η κολόνα, διότι αυτή έχει μικρότερη διατομή από
τη διατομή της δοκού, διότι η διατομή της δοκού είναι ένα
σώμα ακέραιο με τη διατομή της πλάκας, και οι δύο μαζί
υπερτερούν της διατομής της κολόνας.
Και όπως ξέρουμε, μεγαλύτερη διατομή, περισσότερη αντοχή
ως προς τις τέμνουσες.
Από ότι αναφέραμε πιο πάνω, οι κύριες φορτίσεις που είναι
ψαθυρές για τον φέροντα οργανισμό κατά τη διέγερση του
σεισμού, είναι δύο.
α) Οριζόντιες φορτίσεις (προερχόμενες από την αδράνεια που
σε συνδυασμό και με την ιδιοσυχνότητα προκαλεί την τα-
λάντωση)
β) Κάθετες φορτίσεις (προερχόμενες από το ίδιον βάρος του
φέροντος, της τοιχοποιίας, και των πραγμάτων)
Ακόμα αναφέραμε πιο πάνω, ότι η κολώνα κατά τον σεισμό,
μετατοπίζει τον κάθετο άξονά της πότε δεξιά πότε αριστερά,
ενώ η δοκός διατηρεί τον οριζόντιο άξονά της λόγο των κάθε-
των φορτίσεων.
Συμπέρασμα
Αν μπορέσουμε να σταματήσουμε τον κάθετο άξονα της κο-
λώνας να αλλάζει μοίρες εναλλάξ, (λόγω πλάγιων φορτίσεων)
τότε δεν θα υπάρχουν τέμνουσες στα στοιχεία της κολόνας και
της δοκού, διότι ο κόμβος θα παραμείνει στις 90 μοίρες.
Πως μπορούμε να σταματήσουμε τον κάθετο άξονα της κολό-
νας να αλλάζει μοίρες εναλλάξ?
Μπορούμε με τρεις τρόπους
α) Ή να πακτώσουμε τη βάση με το έδαφος.
β) Ή να πακτώσουμε το δώμα με το έδαφος.
γ) Ή να προ εντείνουμε το δώμα με το έδαφος στα πλαίσια της
επαλληλίας (στα πλαίσια αντοχής της κολόνας στη θλίψη
και την κάμψη)
Βασική προυπόθεση για να εφαρμόσουμε τους πάρα πάνω
τρεις τρόπους, είναι οι κολώνες να μην είναι πολύ μικρές, ή
να είναι αντί κολώνες τοιχία.
(μεγάλη διατομή κάτοψης σε μήκος)
Γιατί οι κολώνες τοιχία πρέπει να έχουν μεγάλη διατομή κάτο-
ψις σε μήκος?
Για τέσσερις κύριους λόγους.
α) Για να μην κάμπτονται εύκολα κατά την προένταση (όπως
οι μικρές κολώνες)
β) Για να αντέχουν να διαχειριστούν και τα στατικά φορτία,
και τα πρόσθετα φορτία της προέντασης.
γ) Για να μπορούμε να κάνουμε εύκολα την κατάλληλη διαστα-
σιολόγηση στη διατομή κάτοψις.
Δηλαδή τις κολόνες τοιχία, μπορούμε σε ένα σχέδιο κάτο-
ψις ενός φέροντος οργανισμού να τις τοποθετήσουμε κατά
διαφορετικές διευθύνσεις, έτσι ώστε από όποια κατεύθυν-
ση και αν έλθει ο σεισμός να φέρουν αντίσταση.
δ) Όταν η διατομή του τοιχίου κατά μήκος είναι μεγάλη, μπο-
ρούμε να το πακτώσουμε στα δύο άκρα του.
Η πάκτωση ή προένταση των δύο άκρων του τοιχίου, είναι
πολύ καλύτερη από ότι η πάκτωση μιας κολώνας στο κεντρικό
σημείο της, γιατί κατά την ταλάντωση του τοιχίου στις πλάγι-
ες φορτίσεις του σεισμού, το ένα άκρο του τοιχίου προσπαθεί
να σηκώσει το άλλο άκρο του.
Αν είναι πακτωμένο, ή καλύτερα προεντεταμένο στα δύο άκρα
του, αυτή η τάση ανόδου της βάσης του τοιχίου δεν μπορεί να
γίνει, διότι είναι προεντεταμένη με το έδαφος.
Οπότε αφού δεν μπορεί να ταλαντωθεί το τοιχίο, καταργούμε
την ταλάντωση (το κάνουμε άκαμπτο).
Οπότε καταργούμε στην πράξη....
α) Τη μετατόπιση του κάθετου άξονα της κολώνας, που συνε-
πάγεται την κατάργηση ....
β) των ροπών στους κόμβους που προκαλούν τις τέμνουσες
των κολωνών και των δοκών,καθώς και τα λοξά βέλη ( λοξές ρωγμές )
Με λίγα λόγια, το πακτωμένο ή προεντεταμένο τοιχίο, μπορεί
μόνο του (χωρίς τη βοήθεια των κόμβων) να παραλάβει τις
οριζόντιες φορτίσεις του σεισμού, χωρίς να καταργεί και την
πρόσθετη αντίσταση των κόμβων πάνω στις πλάγιες φορτί-
σεις.

Αν πάρουμε δύο πλαίσια τα οποία είναι ενωμένα στα άκρα
τους με δύο χιαστί συνδέσμους (όπως οι σιδεροσκαλωσιές των οικοδο-
μών)
Τα δύο πλαίσια αποκτούν
α) Δομική οντότητα.
β) Ακαμψία.
Δεν σταματούν όμως την ταλάντωση την οποία μπορεί να δημι-
ουργήσει η επιτάχυνση.
Κατά την ταλάντωση που υφίσταται κατά τον σεισμό, (κυρίως
το ψηλό κτήριο με πολύ υψηλό κέντρο βάρους κατασκευασμέ-
νο από σιδεροκατασκευή,) το χιαστί (Χ)διαμοιράζει καλύτερα
τα καθοδικά φορτία του φέροντα από ότι ο κόμβος σχήματος
(Γ).
Η δομική οντότητα των δύο πλαισίων που τους προσδίδει η
ένωσή τους με τα χιαστί, κατά την ταλάντωση, δεν καταπονείται
όπως καταπονούνται οι κόμβοι σχήματος (Γ) από τα καθοδικά
φορτία της κατασκευής.
Ο λόγος είναι ο εξής:
Κατά την ταλάντωση της σιδηροκατασκευής όταν αυτή είναι
δομικά άκαμπτη, δημιουργείται κενό στήριξης του ενός πλαι-
σίου από το έδαφος, διότι το ένα πλαίσιο σηκώνει το άλλο
εναλλάξ.
Οπότε κατά τη χρονική περίοδο της ταλάντωσης της σκαλωσιάς, όπου το ένα πλαίσιο είναι
αστήριχτο από το έδαφος, και το άλλο είναι στηριγμένο σε αυτό, υφί-
σταται μία ροπή στους κόμβους της κατασκευής λόγω των καθοδικών φορτί-
ων, προερχόμενα από το βάρος της κατασκευής.
Στην περίπτωση των κόμβων (Γ) αυτή η ροπή ολόκληρου
του κτηρίου μετατρέπεται αυτόματα σε ροπή των κόμβων (Γ) η
οποία δημιουργεί τέμνουσες στα άκρα του.
Στην περίπτωση των χιαστί (Χ) αυτή η ροπή μεταφέρεται δια-
γώνια από το άνω μέρος του αστήριχτου πλαισίου,στην κάτω
γωνία του στηριγμένου πλαισίου, μέσω της μπάρας του χιαστί.
Αν η μπάρα του χιαστί αντέχει την κάμψη που του εξασκούν
τα καθοδικά φορτία που μετατρέπονται σε ροπή, τότε δεν υπάρχει
κανένα πρόβλημα στη δομική οντότητα του κτηρίου.
Πάντως τα χιαστί (Χ) προσδίδουν καλύτερη δομική οντότητα
στην κατασκευή από ότι προσδίδουν οι κόμβοι.
Φυσικά ο συνδυασμός και των δύο, τρόπων στήριξης ( Χ ) και ( Γ ) είναι
πιο ισχυρός.
Το ερώτημα είναι αν μπορούμε να κάνουμε αυτή την σιδηρο-
κατασκευή ακόμα πιο ισχυρή απο ότι αυτή είναι, με τον
συνδυασμό των δύο τρόπων στήριξης (Χ) και (Γ) μαζί.
Ερώτηση
Υπάρχει και άλλος τρόπος στήριξης, τον οποίο θα προ-
σθέσουμε στους άλλους δύο τρόπους και οι τρις τρόποι μαζί
να κατασκευάσουν το απόλυτο αντισεισμικό σύστημα των σι-
δηροκατασκευών?
Απάντηση
Ναι υπάρχει.
Αναφέραμε ότι την ψαθυρή αστοχία στις κατασκευές, την δη-
μιουργούν οι ροπές, προερχόμενες από δύο διασταυρώμενες φορτίσεις
κατά την ταλάντωση οι οποίες είναι :
α) Οι αδρανειακές εντάσεις
β) τα καθοδικά αστήριχτα φορτία της κατασκευής,που δημι-
ουργούνται κατά τη φάση μονομερούς ανόδου αυτής.
Τα καθοδικά φορτία πάντα υπάρχουν ... οι ροπές όμως δεν
υπάρχουν αν αυτά τα καθοδικά φορτία ισορροπούν με την
αντίθετη φορά των δυνάμεων του εδάφους
Οι ροπές εμφανίζονται μόνο όταν τα καθοδικά φορτία είναι
χωρίς την αντίδραση των δυνάμεων της βάσης. Δηλαδή κατά
την ταλάντωση.
Πακτώνοντας, ή προεντείνωντας την σιδηροκατασκευή με το
έδαφος, καταργούμε στην ουσία τα αστήριχτα καθοδικά φορ-
τία που δημιουργούν τις ροπές στους κόμβους.
Συμπέρασμα
H αντισεισμική μέθοδος κατασκευών καθώς και ο μηχανισμός του ελκυστήρα, ( Seismic stop ) εφαρμόζεται και τοποθετείτε
σε σιδηροκατασκευέ ς με χιαστί (Χ) και κόμβους (Γ) και είναι ο
τρίτος τρόπος ο οποίος συνδυάζετε άψογα με τους άλλους δύο
ώστε να κατασκευάσουμε την απόλυτη αντισεισμική οντότη-
τα σιδηροκατασκευής, που συν των άλλων είναι και ελαφριά
που συνεπάγεται μικρότερη αδράνεια,οπότε και λιγότερες
φορτίσεις, και μεγαλύτερη αντοχή στις τέμνουσες που έχει
μία σιδηροκατασκευή, από ότι έχει ένας σκελετός οπλισμένου
σκυροδέματος.
Η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για την βελτίωση και την συγκράτηση των πρανών του εδάφους.
Π.Χ http://postimage.org/image/29l3p1xpg/
Γενικά αντικαθιστά όλα τα είδει πασσάλων προσφέροντας καλύτερη πρόσφυση με το έδαφος λόγο υδραυλικής πίεσης.
Γενικά είναι ένας μηχανισμός ο οποίος πακτώνεται στα πρανή της γεώτρησης, λόγο των θλιπτικών δυνάμεων που εξασκεί πλάγιο αξονικά αυτής, και κατ αυτόν τον τρόπο μπορεί να δεχθεί φορτίσεις κάθετες, και ανοδικές, προστατεύοντας τις κατασκευές από την καθίζηση και την ταλάντωση.
Μπορεί να τοποθετηθεί τόσο σε υπό κατασκευή, όσο και σε υφιστάμενες κατασκευές διάφορων φορέων όπως είναι όλοι οι φέροντες οργανισμοί κτηρίων, γέφυρες, φράγματα, κ.λ.π.
Χρησιμεύει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική, αλλά και την προστασία γενικά των μεγάλων κατασκευών, από τις φορτίσεις του αέρα.
Η εφαρμοσμένη τεχνολογία σήμερα απλός εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, ( μέσω προέντασης ) κάνοντας αυτά τα δύο ένα, (σαν σάντουιτς)
Αυτό γίνεται πρώτη φορά παγκοσμίως.
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, έχει ευεργετικά αποτελέσματα διότι εκτός των αναφερθέντων καλών χρησιμεύει ακόμα για να....
α) Εξασφαλίζει δομική οντότητα εδάφους κατασκευής.
β) Κατά την διέγερση του σεισμού,αλλάζει ευεργετικά την κατεύθυνση στις φορτίσεις και στις τέμνουσες, και τις κατευθύνει κάθετα του στοιχείου, όπου η διατομή του είναι μεγάλη και ισχυρή.
γ) Οι δυνάμεις απόσβεσης είναι υδραυλικές
δ) Απαλείφει την διαφορά φάσης εδάφους κατασκευής
ε) Απαλείφει την διαφορά φάσης των ορόφων
ζ) Συνεργάζεται με τα εφέδρανα, ώστε να εξασφαλίσει οριζόντια και κάθετη σεισμική μόνωση.
η) Αυξάνει τα δυναμικά χαρακτηριστικά της κατασκευής.
θ) χαμηλώνει την πιθανότητα της ιδιοσυχνότητας στις κατασκευές.
ι) Λόγο υδραυλικής πίεσης που εξασκεί ο μηχανισμός του ελκυστήρα, κρατάει πάντα τον τένοντα τανυσμένο, διορθώνοντας αυτόματα κατ αυτόν τον τρόπο την έρπη του χάλυβα, όπου υφίσταται κατά τη μακροπρόθεσμη προέντασή του, και διορθώνει αυτόματα την ένταση πάκτωσης της άγκυρας με τα πρανή της γεώτρησης, ακόμα και όταν αυτά υποχωρήσουν λόγο χαλαρότητας των πρανών της γεώτρησης.
Το σύστημα είναι υπό αριθμητική διερεύνηση ( σε επίπεδο υπολογιστηκής προσομοίωσης ) από το εργαστήριο στατικής και αντισεισμικών ερευνών του Ε.Μ.Π, με τα πρώτα αποτελέσματα να είναι αρκετά ενθαρρυντικά.
Περισσότερα ...στην ιστοσελίδα http://www.antiseismic-systems.com/

Το απόλυτο αντισεισμικό σύστημα

Sponsor

Sponsor
 

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 26 Δεκ 2012 21:44

Φθίνουσα αρμονική ταλάντωση μέσω του υδραυλικού συστήματος της ευρεσιτεχνίας.

Επειδή η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση, στο σχεδιασμό των φορέων
υπεισέρχονται και παραμορφωσιακά μεγέθη του φορέα.

Η ταλάντωση ευθύνεται για αυτά τα παραμορφωσιακά μεγέθη του φορέα.
Οι ταλαντώσεις και τα παραμορφωσιακά μεγέθη επιβραδύνονται από δυνάμεις απόσβεσης.

Στην επιβαλλόμενη
παραμόρφωση που προκαλεί η ταλάντωση η ακτίνα
καμπυλότητας του φορέα, ( κολόνας ) έχει την τάση να μεγαλώνει.

Το υδραυλικό σύστημα της εφεύρεσης παραλαμβάνει εσωτερικά ενεργειακές δυνάμεις, διότι εμποδίζει ελαστικά την ακτίνα καμπυλότητας του φορέα να μεγαλώσει, με
αποτέλεσμα η ενέργεια του ταλαντούμενου φορέα να μειώνεται με την πάροδο του χρόνου, ( διότι αυτή η ενέργεια απορροφάται σταδιακά από το υδραυλικό σύστημα,) και η
ταλάντωση μετατρέπετε σιγά σιγά σε φθίνουσα αρμονική ταλάντωση.

Δηλαδή η δυσκαμψία του φορέα, οπότε και η επιβαλλόμενη
παραμόρφωση, μπορεί να ελεγχθεί ( από το αυτό ρυθμιζόμενο υδραυλικό σύστημα της ευρεσιτεχνίας ) τόσο στον δείκτη πλαστιμότητας
μετακινήσεων ( το βέλος του φορέα στην κρίσιμη διατομή, )

όσο και στο δείκτης πλαστιμότητας
καμπυλοτήτων ( ακτίνα καμπυλότητας του φορέα, κολόνες )

Βέβαια προυπόθεση είναι η στάθμη επιπό-
νησης της δυσκαμψίας του φορέα να είναι μικρότερη από τη στάθμη αστοχίας.

Το μέτρο της επιβράδυνσης της απόσβεσης, εξαρτάται συνήθως
από την ταχύτητα της κίνησης.
Η υδραυλική επιβράδυνσης της απόσβεσης είναι
ανάλογη της ταχύτητας παραμόρφωσης της ακτίνα καμπυλότητας του φορέα, και έχει φορά αντίθετη από αυτή.

Υποθέτω ότι το μέτρο της επιβράδυνσης της απόσβεσης, δεν
είναι μόνο συνάρτηση της ταχύτητας, αλλά και της πίεσις των υδραυλικών μέσα στον θάλαμο του υδραυλικού συστήματος.

Θα ήταν χρήσιμο αν μπορούσαμε να ελέγξουμε τα παραμορφωσιακά μεγέθη του φορέα?

Απάντηση
Ξέρουμε ότι πλαστιμότητα είναι η, υπό ένταση, συμπεριφορά του Ο.Σ. (εν προκειμένω-γιατί μπορεί να αναφέρεται και σε άλλο υλικό-χωρίς καν σίδερα...), χάρη στην οποία το υλικό δύναται, εντός κάποιων ορίων, να δέχεται αυξανόμενη τάση ενώ διατηρεί σχεδόν σταθερή την παραμόρφωσή του.

Ένα μη πλάστιμο υλικό αστοχεί απότομα (δηλαδή χωρίς προειδοποίηση της επικείμενης αστοχίας) μόλις αναλάβει το μέγιστο φορτίο του.

Υπάρχει η πλαστιμότητα του σκυροδέματος και του χάλυβα,(αντοχή χάλυβα στην ολκιμότητα)
η πλαστιμότητα των διατομών, η πλαστιμότητα δοκών και υποστυλωμάτων, καθώς και οι
παράμετροι που την επηρεάζουν.

Τι γίνετε όμως αν η παραμόρφωση περάσει τα όρια της πλαστιμότητας, και περάσει στην πλαστική μη ανατρέψιμη περιοχή?
Απλά θα έχουμε αστοχία, διότι θα έχουμε υπερβεί τα πλάστιμα μεγέθη.
Ξέρουμε ότι τα παραμορφωσιακά μεγέθη του φορέα εξαρτώνται από το πλάτος της ταλάντωσης.
Η μείωση του πλάτους ονομάζεται απόσβεση.
Αυτή την απόσβεση της ταλάντωσης την αναλαμβάνει ο υδραυλικός μηχανισμός της ευρεσιτεχνίας ( διότι δεν αφήνει να μεγαλώσει την ακτίνα καμπυλότητας του φορέα και της κολόνας ) και την μετατρέπει σε μηχανική τριβή, οπότε θερμότητα.
Γενικά ο υδραυλικός ελκυστήρας είναι ένας πλάστιμος μηχανισμός απορρόφησης και απόσβεσης της ταλαντωμένης ενέργειας.
Κατ αυτόν τον τρόπο μπορούμε να έχουμε ελεγχόμενη πλαστιμότητα του φέροντα και της ακτίνας καμπυλότητας των κάθετων στοιχείων.
Τι γίνεται όμως αν οι τάσεις ξεπεράσουν τα όρια πλαστιμότητας του υδραυλικού μηχανισμού?
Πως τότε ο υδραυλικός μηχανισμός, θα κρατήσει τον φέροντα και τα κάθετα στοιχεία, ώστε αυτά να μην ξεπεράσουν την στάθμη αστοχίας?
Πολύ απλά.
Ο υδραυλικός μηχανισμός φέρει στο πάνω μέρος του εμβόλου, ένα εξωτερικό δακτύλιο, ο οποίος είναι ένα με το έμβολο.
Οπότε όταν ο φορέας ταλαντώνετε το έμβολο εισχωρεί μέσα στο χιτώνιο, μέχρι το σημείο που ο δακτύλιος του εμβόλου δεν χωράει να μπει μέσα στο έμβολο.
http://www.youtube.com/watch?v=KPaNZcHBKRI
Κατ αυτόν τον τρόπο, ο δακτύλιος ορίζει την στάθμη ταλάντωσης του φέροντα, σταματώντας αυτόν, λίγο πριν από το επιτρεπτό όριο πλαστιμότητάς του.

Σε υπέρ κατασκευές με αυξημένες ανάγκες ελεγχόμενης πλαστιμότητας καθ όλον τον κάθετο άξονα των υποστυλωμάτων , χρησιμοποιούμε μία άλλη μέθοδο κατασκευής.

Αντί να προεντείνομαι όλα τα κάθετα στοιχεία με το έδαφος, προεντείνομαι μόνο ένα κεντρικό φρεάτιο, ή δύο φρεάτια στα άκρα του φέροντα.

Προσέχουμε τα προτεταμένα φρεάτια να μην έρχονται σε επαφή με τον φέροντα.
Αυτό το επιτυγχάνομαι με την κατασκευή σεισμικού αρμού στο ύψος των πλακών, που περικλείουν ελαστομερεί υλικά.
Κατ αυτόν τον τρόπο, μπορούμε να τοποθετήσουμε και εφέδρανα ώστε να έχουμε οριζόντια σεισμική μόνωση του φορέα, αλλά συγχρόνως να επιτυγχάνομαι και την ελεγχόμενη πλαστιμότητα του κάθετου άξονα του φορέα.
Δες αυτή την μέθοδο στο βίντεο http://www.youtube.com/watch?v=KPaNZcHBKRI

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 27 Δεκ 2012 05:42

Μπορούμε να πούμε ότι..
Η Δύναμη είναι φορτίο, ροπή ή τάση, ενώ η Παραμόρφωση είναι επιμήκυνση, καμπυλότητα, βέλος ή στροφή.

Η δύναμη και η παραμόρφωση συνυπάρχουν ως οντότητα, διότι η μία δεν υφίσταται χωρίς την άλλη.

Προυπόθεση για να υπάρξουν αυτές οι δύο οντότητες είναι η ύλη, η οποία εμπεριέχει δυνάμεις, και παραμορφώνεται από εσωτερικές και εξωτερικές επιδράσεις φορτίων.

Με την ίλη μπορείς να κατασκευάσεις διάφορα σχήματα, από τα οποία εξαρτάτε η τιμή της δύναμης και της παραμόρφωσης.

Η τιμή της δύναμης και της παραμόρφωσης εξαρτάτε και από άλλους παράγοντες όπως είναι η σύνθεση της ύλης, που καθορίζει το βάρος της και την αντοχή της, η επιτάχυνση εξωτερικών φορτίσεων η οποία επηρεάζει τις παραμορφώσεις, καθώς και η αντοχή της βάσεως όπου εδράζεται η ύλη.

Στον φέροντα οργανισμό ενός έργου, η δύναμη και η παραμόρφωση είναι το Α και το Ω στην στατική και δυναμική των κατασκευών.
Παραλείψαμε κάτι από τα πάρα πάνω?
Ναι.
Την πάκτωση ή την προένταση της κατασκευής με το έδαφος, ( δηλαδή την σύνδεσή της κατασκευής με αυτό, ) καθώς και την πλαστιμότητα των κατασκευών, ή την ακαμψία αυτών.

Άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι ασύνδετος με το έδαφος,.... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι πακτωμένος με το έδαφος,... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι προτεταμένος με το έδαφος, και άλλες δυνάμεις και παραμορφώσεις συντελούνται αν ο φορέας είναι πλάστιμος, και άλλες όταν είναι άκαμπτος.

Το ερώτημα που τίθεται είναι πια από τις πέντε μεθόδους είναι πιο κατάλληλη για την στατική και δυναμική των κατασκευών???

Δεδομένου ότι η σχεδιαζόμενες κατασκευές πλάστιμες ή άκαμπτες που απλός εφάπτονται του εδάφους θεμελίωσης είναι δοκιμασμένες στην πεπατημένη των κατασκευών, τίθεται το ερώτημα αν οι άλλες μέθοδοι που για πρώτη φορά προτείνω χρίζουν εφαρμοσμένης έρευνας.

Ακόμα πια μέθοδος είναι λογική ώστε να έχουμε τις μικρότερες παραμορφώσεις???
Θέλουμε ή δεν θέλουμε μικρότερες παραμορφώσεις στις δομικές κατασκευές?
Η πλαστιμότητα είναι παραμόρφωση ναι ή όχι?

Που είναι καλύτερα να έχουμε αρμονική απόσβεση της ταλάντωσης?...στο δώμα, κάθετη στα κάθετα στοιχεία, ή πλαγίως των κάθετων στοιχείων ή και στα δύο επιμέρους σημεία?

Η συνεργασία μεταξύ σκυροδέματος και χάλυβα σε μια κατασκευή από Ο.Σ. επιτυγχάνεται με τη συνάφεια.
Με τον όρο συνάφεια ορίζεται η συνδυασμένη δράση των μηχανισμών που παρεμποδίζουν τη σχετική ολίσθηση μεταξύ των ράβδων του οπλισμού και του σκυροδέματος που τις περιβάλλει.

Οι επιμέρους μηχανισμοί της συνάφειας είναι η πρόσφυση, η τριβή και, για την περίπτωση ράβδων χάλυβα με νευρώσεις, η αντίσταση του σκυροδέματος το οποίο εγκλωβίζεται μεταξύ των νευρώσεων.

Η συνδυασμένη δράση των μηχανισμών αυτών θεωρείται ισοδύναμη με την ανάπτυξη διατμητικών τάσεων στη επιφάνεια επαφής σκυροδέματος και χάλυβα.

Όταν οι τάσεις αυτές φθάσουν στην οριακή τιμή τους επέρχεται καταστροφή της συνάφειας με τη μορφή διάρρηξης του σκυροδέματος κατά μήκος των ράβδων και αποκόλλησης των ράβδων χάλυβα.

1) Το ερώτημα είναι αν η συνάφεια μεταξύ χάλυβα και Ο.Σ είναι μικρότερη από την εφελκυστική ικανότητα του χάλυβα.

Αν είναι μικρότερη, τότε δεν καταλαβαίνω τι νόημα έχει ο επιπλέον οπλισμός ( για την παραλαβή μεγαλύτερων εφελκυστικών τάσεων ) πέραν της αντοχής της συνάφειας μεταξύ χάλυβα και Ο.Σ.

Βέβαια η μείωση των τάσεων επιτυγχάνεται με αύξηση της επικάλυψης και μείωση της διαμέτρου των ράβδων του οπλισμού.

Η αύξηση της οριακής τιμής τους επιτυγχάνεται με αύξηση της αντοχής του σκυροδέματος.

Η παρουσία εγκάρσιου οπλισμού (συνδετήρων) δρα ευνοϊκά περιορίζοντας το άνοιγμα των αναπτυσσόμενων ρωγμών στη επιφάνεια οπλισμού και σκυροδέματος.

2) Ερώτημα...καλά όλα αυτά αλλά, πως αντιμετωπίζουμε την διαφορετικότητα της ελαστικότητας του σκυροδέματος και του χάλυβα πάνω στην ακτίνα καμπυλότητας?

Δηλαδή κατά την ταλάντωση του φέροντα τα κάθετα στοιχεία ( κολόνες ) εμφανίζουν την ακτίνα καμπυλότητας η οποία εξωτερικά των στοιχείων τείνει να μεγαλώσει, αξιώνοντας από την επικάλυψη του σκυροδέματος να είναι πιο πλάστιμη και από τον χάλυβα αν δεν θέλουμε την αστοχία του.

Αφού ξέρουμε ότι η πλαστιμότητα του Ο.Σ είναι κατά πολύ μικρότερη της πλαστιμότητας του χάλυβα, αυτό δεν είναι μεγάλο πρόβλημα συμβάλλοντας στην αστοχία?

Για εμένα είναι μεγάλο πρόβλημα για τρεις βασικούς λόγους.

α) διότι το σκυρόδεμα αδυνατεί να είναι τόσο ελαστικό ώστε να επιμηκυνθεί όσο απαιτεί η ακτίνα καμπυλότητας, και αφετέρου

β) η συνάφεια καταστρέφεται διότι δημιουργούνται μεγάλες διατμητικές τάσεις μεταξύ χάλυβα και σκυροδέματος λόγο
διαφορετικής ακτίνας καμπυλότητας που έχουν αυτά τα υλικά λόγο της θέσεως που κατέχουν στο υποστύλωμα.

και γ) Αν ένα υλικό είναι πλάστιμο όπως είναι ο χάλυβας, και το άλλο υλικό είναι μη πλάστιμο όπως είναι το σκυρόδεμα,...πιστεύω ότι αυτή η σχέση δημιουργεί μεγάλες ακτινωτές διατμητικές τάσεις στην συνάφεια των δύο υλικών.

Τελικά η πλαστιμότητα δεν είναι τόσο πλάστιμη σε υλικά διαφορετικής πλαστιμότητας.
Μήπως οι υπερστατικοί ( προτεταμένοι με το έδαφος ) φορείς είναι καλύτεροι ?

Υ.Γ
Ξέρουμε ότι σε έναν φορέα εάν αρχίσει το φαινόμενο του λυγισμού, ο οπλισμός τείνει να επιμηκυνθεί, για να ακολουθήσει τον λυγισμό του κάθετου στοιχείου.

Επειδή όμως ο χάλυβας υπόκεινται σε μεγάλες εφελκυστικές τάσεις, αντιδρά στην παραμόρφωση που του επιβάλουν τα εξωτερικά φορτία του σεισμού.

Ερώτημα που αντιδρά ακριβώς ο οπλισμός?
Αντιδρά
α) στην συνάφεια που υπάρχει μεταξύ αυτού και του σκυροδέματος
β) στο περισφιγμένο σκυρόδεμα, που προσπαθεί πλάγιο αξονικά με καμπτικές τάσεις να του μεγαλώσει την ακτίνα καμπυλότητας.
Ερώτημα
Αν αυτό εφαρμόζει το περισφιγμένο σκυρόδεμα στον χάλυβα το ίδιο δεν εφαρμόζει και ο χάλυβας στην επικάλυψη του σκυροδέματος?
Αυτό με την σειρά του εγκρίνεται.
Για τους λόγους αυτούς, θα ήταν καλό να περιορίσουμε την πλαστιμότητα
Βλάπτει σοβαρά τις κατασκευές, αν αυτές δεν είναι κατασκευασμένες από λάστιχο.

Από την ανάρτηση αυτή βγάζουμε το συμπέρασμα ότι.
Ο σημερινός γραμμικός οπλισμός των κάθετων στοιχείων πρέπει να είναι μικρής διατομής ( οπότε περισσότερες βέργες χάλυβα στα ίδια σχεδιαζόμενα κιλά οπλισμού ) ώστε σε συνδυασμό με τον πυκνό εγκάρσιο οπλισμό ( τσέρκια ) να εγκλωβίζουν το περισφιγμένο σκυρόδεμα ώστε όταν αυτό αστοχήσει να διατηρεί τα κομμάτια του σκυροδέματος στον χαλύβδινο κλωβό για την αποφυγή της κατάρρευσης του δομικού έργου.

Για τον σημερινό σχεδιαζόμενο υπολογισμό της σεισμικής απόκρισης μιας κατασκευής απαιτείται η επίλυση των δυναμικών εξισώσεων ισορροπίας.
Στην φόρτιση ενός σεισμού, πρέπει να υπολογίσουμε τα εντατικά, και παραμορφωσιακά μεγέθη, καθώς και την μετατόπιση του άξονα καμπυλότητας σε κάθε φάση του σεισμού, σε συνδυασμό με την αλληλεπίδραση εδάφους κατασκευής.

Με τις λίγες γνώσεις που έχω, καταλαβαίνω ότι προσπαθείτε να σχεδιάσετε τις κατασκευές στα όρια των εντατικών μεγεθών παραμόρφωσης της πλαστιμότητας των υλικών στις φορτίσεις του σεισμού.

Εδώ είναι που πρέπει να καταλάβετε κάτι πολύ απλό.
α) Ενώ εσείς βάζετε τον χάλυβα να συνεργασθεί με το σκυρόδεμα μέσο της συνάφειας των δύο υλικών ώστε κατάλληλα τοποθετημένα να παραλάβουν το καθένα τον εφελκυσμό και την θλίψη, εγώ κάνω κάτι άλλο .....
Κάνω προένταση
Με την προένταση καταργούμε στην ουσία την συνάφεια των δύο υλικών, και βάζουμε το κάθε ένα από αυτά τα δύο υλικά ξεχωριστά να παραλάβουν αυτό που μπορούν καλύτερα να παραλάβουν...δηλαδή ο χάλυβας τον εφελκυσμό, και το σκυρόδεμα την θλίψη.
β) Με το υδραυλικό σύστημα που τοποθετώ στο δώμα βασικά κάνω το εξής ....

1) Καταργώ τα εντατικά μεγέθη τις παραμορφώσεις και τις μετατοπίσεις των φορτίσεων του σεισμού στον φέροντα οργανισμό, γιατί ελέγχω την ταλάντωση με το υδραυλικό σύστημα και μεταβιβάζω μέσο αυτού όλα αυτά τα μεγέθη σε δύο βασικούς κάθετους άξονες.

Ο πρώτος άξονας είναι ο άξονας του τένοντα ο οποίος αναλαμβάνει όλα τα μεγέθη του εφελκυσμού, εξαντλώντας 100% την αντοχή του διότι δεν εξαρτάτε από την συνάφειά του με το σκυρόδεμα.
Ο δεύτερος κάθετος άξονας είναι το τοιχίο, κολόνα, το οποίο αναλαμβάνει αποκλειστικά μόνο τα κάθετα θλιπτικά φορτία του σεισμού, και του ιδικού βάρους τις κατασκευής.

Δεν υφίστανται για να επιλύσουμε μετατοπίσεις και παραμορφώσεις, γιατί αυτά ελέγχονται από το υδραυλικό σύστημα το οποίον αναλαμβάνει πλήρως τον έλεγχο της ακτίνας καμπυλότητας τόσο των κάθετων στοιχείων, όσο και του κτηρίου.....τα μόνα που πρέπει να επιλύσουμε είναι τα εντατικά μεγέθη εφελκυσμού του τένοντα, και τα εντατικά μεγέθη της θλίψης του κάθετου στοιχείου, καθώς και την κάμψη αυτού.
Πρώτα υπολογίζουμε την αδράνεια όλων των πλακών, και κατόπιν υπολογίζουμε πόσα προτεταμένα ή πακτωμένα με το έδαφος τοιχία και κολόνες χρειάζονται, ώστε να παραλάβουν την αδράνεια του κτιρίου.


Αν μάλιστα αντί πάκτωση εφαρμόσουμε προένταση στα κάθετα στοιχεία στα πλαίσια της επαλληλίας, τότε καταργούμε τον μηχανισμό ορόφου, διότι πολλαπλασιάζουμε τις κρίσιμες διατομές.
Περισσότερες κρίσιμες διατομές στα κάθετα φέροντα στοιχεία, επιτρέπουν ανακατανομή των πλάγιων φορτίσεων του σεισμού σε περισσότερα σημεία των κολονών, μειώνοντας ή και καταργώντας κατ αυτόν τον τρόπο τον μηχανισμό ορόφου, που προκαλείτε κατά κύριο λόγο, λόγο τις συγκέντρωσης των φορτίσεων σε μία κρίσιμη διατομή ενός ορόφου της πολυκατοικίας, με αποτέλεσμα την αστοχία.
Ακόμα αν εφαρμόσουμε προένταση με φόρτιση 50% της αντοχής του υποστυλώματος αυξάνουμε τουλάχιστον κατά 33% την αντοχή στην τέμνουσας βάσης.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 31 Δεκ 2012 10:11

Ξέρουμε ότι για τον σημερινό σχεδιαζόμενο υπολογισμό της σεισμικής απόκρισης μιας κατασκευής απαιτείται η επίλυση των δυναμικών εξισώσεων ισορροπίας.
Ακόμα ξέρουμε ότι αν έχουμε έναν ταλαντωτή, κατά την ταλάντωση του η εξωτερική κάθετη επιφάνειά του εφελκύεται και η εσωτερική κάθετη επιφάνειά του θλίβεται. ( Αυτό συμβαίνει και στις κολόνες )
Το ερώτημα είναι....η επίλυση των δυναμικών εξισώσεων ισορροπίας, πως είναι καλύτερα να λυθεί ?
α) με την μέθοδο του ισοστατικού φορέα, ή
β) με την μέθοδο του υπερστατικού φορέα?

Ακόμα
Ο υδραυλικός ελκυστήρας εισάγει μία πρόσθετη αντίδραση προς τις επιβαλλόμενες φορτίσεις του σεισμού, που δεν υφίσταται στις σχεδιαζόμενες σημερινές κατασκευές, ώστε η επίλυση των δυναμικών εξισώσεων ισορροπίας, να είναι εφικτές.

Αυτή την αντίδραση, την παίρνει από την πακτωμένη άγκυρα του μηχανισμού του ελκυστήρα με το έδαφος, και την μεταβιβάζει μέσω του τένοντα στο δώμα.
Δηλαδή βάζουμε το έδαφος ( μέσω του μηχανισμού του ελκυστήρα ) να αντιδράσει στο δώμα για να σταματήσουμε την ταλάντωση η οποία παραμορφώνει τον εξωτερικό κάθετο άξονα της κολόνας.

Στο πρώτο ερώτημα τώρα...
Το ερώτημα είναι....η επίλυση των δυναμικών εξισώσεων ισορροπίας, της κολόνας πως είναι καλύτερα να λυθεί ?
α) με την μέθοδο του ισοστατικού φορέα, ή
β) με την μέθοδο του υπερστατικού φορέα?
Δηλαδή με τον σημερινό σχεδιασμό, ή με την μέθοδο του ελκυστήρα ο οποίος εισάγει μία κάθετη προένταση ή απλός μία αντίσταση στο δώμα?
1) εισάγοντας μία πρόσθετη αντίσταση ισορροπίας του φέροντα έναντι των φορτίσεων του σεισμού, αυτό μόνο θετικό μπορεί να είναι.
Το έδαφος προκαλεί το πρόβλημα,...το έδαφος θα το λύσει....
2) είναι λάθος να πιστεύουμε μόνο στην σινάφια του σκυροδέματος με τον χάλυβα, διότι δημιουργούνται πάρα πολλά άλλα προβλήματα, και από μόνη της δεν είναι ικανή να εξισώσει την αντοχή του χάλυβα στον εφελκυσμό.
Χρειάζεται εκτός από την σινάφια, και μία πρόσθετη ισχιρή πάκτωση στα δύο άκρα του χάλυβα. ( όπως γίνεται με την προένταση )
3) Στην προένταση δεν υφίστανται η σινάφια, και αυτό γιατί ο τένοντας διαπερνά ελεύθερος ( μέσο ενός σωλήνα ) όλο το μήκος του κάθετου άξονα της κολόνας.
Για τον λόγο αυτόν η προένταση έχει ένα μεγάλο πλεονέκτημα που δεν έχει ο απλός οπλισμός.
Πιο είναι αυτό το πλεονέκτημα?
Είναι...
Ο χάλυβας πριν αστοχήσει έχει εξαντλήσει το 100 της % της εφελκυστικής του ικανότητας, ενώ με τον απλό οπλισμό η αστοχία επέρχεται πριν όταν αστοχήσει η σινάφια των δύο υλικών.

1) Εισάγοντας μία αξονική αντίδραση στο δώμα, ( πάκτωση εδάφους δώματος ) σταματάμε την μεγάλη ταλάντωση.
2) Εισάγοντας μία αξονική προένταση μεταξύ δώματος και εδάφους στα πλαίσια της επαλληλίας των δύο υλικών, έχουμε τα καλά της προέντασης που ξέρουμε από την βιβλιογραφία, αλλά και από αυτά που έχω αναφέρει στις προηγούμενες αναρτήσεις μου από την έρευνα που έχω κάνει εγώ και το Μετσόβιο.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 16 Ιαν 2013 17:07

Μέθοδοι προέντασης του υδραυλικού και του απλού ελκυστήρα

Η προένταση που εφαρμόζουμε με τον υδραυλικό ή με τον απλό ελκυστήρα, δεν εφαρμόζεται από τον ίδιο τον μηχανισμό των ελκυστήρων.
Η αρχική προένταση εφαρμόζεται με την βοήθεια εξωτερικών ελκυστήρων του εμπορείου, σε κάθε περίπτωση.

Ο μηχανισμός του Υ/Ε και του Α/Ε απλός διατηρούν την προένταση στις αρχικές εντάσεις που τους έχουν επιβάλει οι ελκυστήρες του εμπορείου.
Κάθε δομικό έργο είναι ξεχωριστό και πρέπει να σχεδιάζεται και να επιλύεται σύμφωνα με τις ανάγκες των δυναμικών εξισώσεων ισορροπίας.
Οι ελκυστήρες Υ/Ε και Α/Ε είναι σχεδιασμένοι έτσι ώστε να πληρούν τις ανάγκες των δυναμικών εξισώσεων ισορροπίας των δομικών έργων.
Κάθε ένας από αυτούς είναι σχεδιασμένος έτσι ώστε με την κατάλληλη μέθοδο εφαρμογής, και το κατάλληλο σημείο τοποθέτησης, να επιτυγχάνει την επίλυση προβλημάτων που έχουν σχέση με την...
α) Χαλαρότητα των εδαφών, την έρπη του τένοντα και την συρρίκνωση του σκυροδέματος
β) Στιβαρότητα - καθορίζει τίς ιδιοπεριόδους
γ)Αντοχή - όριο ελαστικής συμπεριφοράς
δ)Πλαστιμότητα - μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.


Ο Υδραυλικός Ελκυστήρας, είναι ο ρυθμιστής των επιβαλλόμενων σεισμικών παραμορφώσεων στα δομικά έργα

α) Αν μπορέσουμε να ελέγξουμε, ή αλλιώς να οριοθετήσουμε καθ όλον το ύψος του κάθετου άξονα την ταλάντωση του φέροντα κατά την διάρκεια ενός σεισμού, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα
Δηλαδή μπορούμε να ελέγξουμε την καμπύλη συμπεριφοράς ή καμπύλη ικανότητας του φέροντα εξασκώντας μία κάθετη αντίδραση ή προένταση στο δώμα, προερχόμενη από το έδαφος μέσο του μηχανισμού του ελκυστήρα, και αφετέρου με την κατάλληλη διαστασιολόγηση των κάθετων στοιχείων του φορέα σχεδιάζοντας δύσκαμπτα κάθετα στοιχεία με μικρό συντελεστής συμπεριφοράς, μεγάλες διαστάσεις, και μικρό ελαστικό φάσμα απόκρισης, τότε έχουμε και την άλλη κατάλληλη επιθυμητή αντίδραση ( εκτός του δώματος ) που εφαρμόζετε στο αντικριστό Π της βάσης του κάθετου στοιχείου στο ύψος της θεμελίωσης.

Αυτές οι δύο αντιδράσεις, δώματος - βάσης,του κάθετου στοιχείου, είναι η δυναμική εξίσωση ισορροπίας προς τις πλάγιες φορτίσεις του σεισμού.

β) Αν μπορέσουμε να ελέγξουμε την παραμόρφωση του εδάφους καθ όλον το εμβαδόν της κατασκευής, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

γ) Αν μπορέσουμε να μεγαλώσουμε και την αντοχή των δομικών υλικών έναντι των επιβαλλόμενων σεισμικών παραμορφώσεων, θέτουμε νέα στάνταρ.

δ) Αν μπορέσουμε να ελέγξουμε αυτόματα με έναν μηχανισμό τα προβλήματα της προέντασης π.χ την έρπη του τένοντα κατά την μακροχρόνια τάνυση, ή την συρρίκνωση του σκυροδέματος κατά την μακροπρόθεσμη ξήρανση που χαλαρώνει τον τένοντα, τότε έχουμε
έναν υπερστατικό φορέα πολύ πιο ικανό στον χρόνο.

ε) Αν μπορέσουμε να διαμοιράσουμε τις σεισμικές φορτίσεις ομοιόμορφα και να τις κατευθύνουμε ( όχι εκεί που θέλουν αυτές, αλλά..) σε διατομές ικανές να τις παραλάβουν αυτό καταργεί τον μηχανισμό ορόφου.


ζ) Αν μπορέσουμε να ελέγξουμε τις έντονες στρεπτομεταφορικές ταλαντώσεις στα Ασύμμετρα Πολυώροφα Κτίρια, που προκαλείτε από τα δάπεδα των ορόφων όπου υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις, τότε θα έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα.

η) Αν το υδραυλικό μέρος του ελκυστήρα είναι ένας μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας, αυτό βοηθάει την πλαστιμότητα των στοιχείων, απορροφώντας από αυτά μεγάλη σεισμική ενέργεια.
Αν τοποθετήσουμε στο υδραυλικό σύστημα και έναν αυτόματο ρυθμιστή υδραυλικής πίεσης θαλάμου, τότε προσδιορίζουμε αυτόματα και μακροπρόθεσμα την ταλάντωση του φέροντα στις επιθυμητές τιμές, ώστε αυτός να μην αστοχήσει σε οποιαδήποτε σεισμική φόρτιση.

Όλα αυτά που ανέφερα, είναι τα προβλήματα που λύνει ο Υδραυλικός ελκυστήρας, και η μέθοδος κατασκευής που προτείνω.
Είναι ένας άλλος ικανοτικός σχεδιασμός.

Γενικές παρατηρήσεις

Ο σεισμός στην πράξη δεν παραμορφώνει τον φέροντα οργανισμό.
Η παραμόρφωση εφαρμόζετε από την άρνηση σου φέροντα και των υλικών που φέρει να ακολουθήσει την φορά και την επιτάχυνση του εδάφους.
Σήμερα σχεδιάζουμε με απλοποιημένες μεθόδους, ( εμπειρικές ) χωρίς να υπολογίζουμε την πλήρη δυναμική ανάλυση των κατασκευών.
Σχεδιάζουμε με «ισοδύναμη» στατική ελαστική ανάλυση αντί της πλήρους δυναμικής ανελαστικής ανάλυσης.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.

Τα ερώτημα που θέτω είναι τα εξής.
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?
γ) Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Απαντήσεις
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
Η απάντηση που θα έδινε ένας μηχανικός σήμερα θα ήταν η εξής.
Οι ελαστικές κατασκευές θεωρούνται ως ένα ιδεατό ελαστικό σύστημα, όταν αυτές είναι μέσα στα επιτρεπτά όρια ενός εμπειρικού φάσματος απόκρισης με ανεκτό συντελεστή συμπεριφοράς.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.
Αυτή η δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει λέγεται πλαστιμότητα, και είναι ένας μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.

Εγώ θα απαντούσα ως εξής
Είναι πολύ σωστό να έχουμε έναν μηχανισμό απόσβεσης εισερχόμενης σεισμικής ενέργειας.
Αλλά...θα ήταν καλύτερα αν είχαμε δύο ή και τρεις μηχανισμούς απόσβεσης εισερχόμενης σεισμικής ενέργειας.
1) Πρώτος μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.είναι η πλαστιμότητα του φέροντα.
2) Δεύτερος μηχανισμός απόσβεσης είναι ο υδραυλικός μηχανισμός του υδραυλικού ελκυστήρα ο οποίος εφαρμόζει μία ελαστική αυξομειωμένη αντίσταση στο δώμα εμποδίζοντας αυτό να ανέλθει όταν ταλαντεύεται ο φέροντας οργανισμός http://postimage.org/image/sf8visncn/
3) Τρίτος μηχανισμός απόσβεσης είναι μία άλλη μέθοδος κατασκευής του φέροντα οργανισμού.
Σε αυτήν την μέθοδο τοποθετούμε μέσα στον ελαστικό φέροντα οργανισμό έναν ή περισσότερους άλλους φέροντες ( με μικρότερη ελαστικότητα ) ανεξάρτητους από τον φέροντα, που τους περιβάλει.
Οι ανεξάρτητοι συνεχόμενοι καθ ύψος μικροί φέροντες ( για αρχιτεκτονικούς λόγους μπορεί να είναι π.χ φρεάτια ανελκυστήρων, αποθήκες, δωμάτια κ.λ.π ) πρέπει να είναι στιβαρές κατασκευές τοποθετημένες σε διάφορα σημεία του φέροντα, με τις κατάλληλες διαστάσεις και αντοχές, ώστε να μπορούν να παραλάβουν μεγάλα θλιπτικά φορτία για να αντέξουν την προένταση και την αντίδραση της θεμελίωσης στην βάση, καθώς και στρεπτομεταφορικές ταλαντώσεις.

Η σύγκρουση που θα υφίσταντο οι φέροντες μεταξύ των αποφεύγετε με την τοποθέτηση ελαστικών ή υδραυλικών αποσβεστήρων.
Στο link αυτό http://postimage.org/image/14tj1webo/ φαίνονται καθαρά οι μαύροι ελαστικοί μηχανισμοί απόσβεσης εισερχόμενης σεισμικής ενέργειας, τοποθετημένοι στο ύψος των πλακών.
Αυτή η μέθοδος είναι κατάλληλη για πολύ ψιλές κατασκευές, διότι
1) Με την τοποθέτηση των κατάλληλων μαλακών ή σκληρών αποσβεστήρων σεισμικής ενέργειας καθ ύψος, καταργούμε τον μηχανισμό ορόφου
2) Η πλαστιμότητα του μεγάλου φέροντα, οπότε ο αρχικός μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας δεν καταργείται.
3) Αν τοποθετήσουμε υδραυλικούς ελκυστήρες σε όλους τους ανεξάρτητους φέροντες ( και σε αυτόν που τους περιβάλει και στους εσωτερικούς σε επί μέρους κατάλληλα σημεία ) τότε έχουμε τριπλή απόσβεσης εισερχόμενης σεισμικής ενέργειας, τόσο στην πλαστιμότητα του φέροντα, όσο και στο δώμα στο υδραυλικό τμήμα του Υ/Ε αλλά και πλάγιο αξονική απόσβεση των μετακινήσεων των πλακών πάνω στους ελαστικούς αποσβεστήρες.

Υπάρχουν και άλλοι λόγοι που σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?

Ο κυριότεροι λόγοι είναι δύο
α) ότι δεν έχουμε κατανοήσει ακριβώς πως ο σεισμός παραμορφώνει τον φέροντα, ( επαρκή ανάλυση φορτίσεων )και
β) δεύτερον δεν έχουμε κατανοήσει επαρκώς τους μηχανισμούς που γεννούν τις τέμνουσες.

Αν ξέραμε .... τότε θα ξέραμε και την μέθοδο να αντιμετωπίσουμε το πρόβλημα, και η ελαστική κατασκευή θα ήταν δευτερεύων παράγοντας σχεδίασης.
Αδυνατώντας να κάνουμε την πραγματική ανάλυση των δυναμικών συνιστωσών, έχουμε βρει την εύκολη λύση στην πλαστιμότητα, και στο να λέμε ότι η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση

Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Τα λάθη που κάνουμε είναι ότι θεωρούμε την κατασκευή πακτωμένη με το έδαφος ( λόγο φορτίων ) ενώ αυτή δεν είναι επαρκώς πακτωμένη.
Μερικός πακτωμένες κατασκευές με τον σημερινό σχεδιασμό, θεωρώ μόνο τις κατασκευές που έχουν δύο, τρία υπόγεια.
Αυτές οι κατασκευές έχουν αποδειχθεί πιο ισχυρές..... γιατί?
Μήπως έχω δίκαιο σε αυτά που λέω για την πάκτωση ή την προένταση της κατασκευής με το έδαφος?
Γιατί άλλη κατασκευή είναι αυτή που πατάει στο έδαφος, και άλλη είναι η κατασκευή που συνδέεται με το έδαφος μέσο του τένοντα.
Διαβάστε την ανάρτηση 55 για να καταλάβετε αυτά τα θεμελιώδη βασικά δεδομένα στην ανάλυση δυνάμεων που αγνοούνται στον σημερινό σχεδιασμό.

β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?

Όλες οι παραμορφώσεις του φέροντα καταλήγουν σε τέμνουσες ...λόγο αντίδρασης των υλικών του προς την αδράνεια του να ακολουθήσει την φορά και την επιτάχυνση του σεισμού.

Το σχήμα που σχεδιάζουμε τις κατασκευές είναι ο μηχανισμός που δημιουργεί τρεις διαφορετικές τέμνουσες.
α) Την τέμνουσα που δημιουργεί η αδράνεια του φέροντα, και είναι καθαρά θέμα αδράνειας και επιτάχυνσης ( μεταφορικός λόγος )
β) Την τέμνουσα που δημιουργείται στους κόμβους, και είναι καθαρά θέμα ταλάντωσης και στατικών φορτίων που γεννούν ροπές στους κόμβους που καταλήγουν σε τέμνουσες.
γ) Στα πολυώροφα κτίρια με ασύμμετρες κατόψεις τα οποία υποβάλλονται σε οριζόντιες σεισμικές δυνάμεις, τα δάπεδα των ορόφων υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις, οπότε και στρεπτικές τέμνουσες

Πως η ευρεσιτεχνία βοηθάει τον φέροντα να αντισταθεί σε αυτές τις τέμνουσες

α) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
β) Εφαρμόζοντας προένταση ή πάκτωση σταματάμε τις μετακινήσεις του φέροντα ( την ταλάντωση ) οπότε και τις ροπές στους κόμβους, αφού αυτοί δεν παραμορφώνονται πια.
γ) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
Μεταφορικές τέμνουσες είναι και οι στρεπτικές τέμνουσες.
Αν εφαρμόσουμε και την μέθοδο που περιέχει τον τρίτο μηχανισμό απόσβεσης ( που ανέφερα σε αυτήν την ανάρτηση ) αυτή είναι πολύ πιο αποτελεσματική στις στρεπτικές τέμνουσες.

Μάλιστα η τρίτη μέθοδος απόσβεσης σεισμικής ενέργειας, είναι η μόνη μέθοδος η οποία εκτός των άλλων είναι η μόνη που μπορεί να συνεργαστεί με εφέδρανα για να έχουμε και οριζόντια σεισμική μόνωση .

Συν του ότι ...Αν μπορέσουμε να ελέγξουμε την παραμόρφωση του εδάφους καθ όλον το εμβαδόν της κατασκευής, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

Συν του ότι... Αν μπορέσουμε να ελέγξουμε αυτόματα με έναν μηχανισμό τα προβλήματα της προέντασης π.χ την έρπη του τένοντα κατά την μακροχρόνια τάνυση, ή την συρρίκνωση του σκυροδέματος κατά την μακροπρόθεσμη ξήρανση που χαλαρώνει τον τένοντα, τότε έχουμε
έναν υπερστατικό φορέα πολύ πιο ικανό στον χρόνο.

Όλα αυτά κάνουν τον υδραυλικό ελκυστήρα ..
το απόλυτο αντισεισμικό σύστημα όλων των δομικών κατασκευών

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 30 Ιαν 2013 02:09

Η συνεργασία μεταξύ σκυροδέματος και χάλυβα σε μια κατασκευή από Ο.Σ. επιτυγχάνεται με τη συνάφεια.
Με τον όρο συνάφεια ορίζεται η συνδυασμένη δράση των μηχανισμών που παρεμποδίζουν τη σχετική ολίσθηση μεταξύ των ράβδων του οπλισμού και του σκυροδέματος που τις περιβάλλει.

Οι επιμέρους μηχανισμοί της συνάφειας είναι η πρόσφυση, η τριβή και, για την περίπτωση ράβδων χάλυβα με νευρώσεις, η αντίσταση του σκυροδέματος το οποίο εγκλωβίζεται μεταξύ των νευρώσεων.

Η συνδυασμένη δράση των μηχανισμών αυτών θεωρείται ισοδύναμη με την ανάπτυξη διατμητικών τάσεων στη επιφάνεια επαφής σκυροδέματος και χάλυβα.

Όταν οι τάσεις αυτές φθάσουν στην οριακή τιμή τους επέρχεται καταστροφή της συνάφειας με τη μορφή διάρρηξης του σκυροδέματος κατά μήκος των ράβδων και αποκόλλησης των ράβδων χάλυβα.

1) Το ερώτημα είναι αν η συνάφεια μεταξύ χάλυβα και Ο.Σ είναι μικρότερη από την εφελκυστική ικανότητα του χάλυβα.

Αν είναι μικρότερη, τότε δεν καταλαβαίνω τι νόημα έχει ο επιπλέον οπλισμός ( για την παραλαβή μεγαλύτερων εφελκυστικών τάσεων ) πέραν της αντοχής της συνάφειας μεταξύ χάλυβα και Ο.Σ.

Βέβαια η μείωση των τάσεων επιτυγχάνεται με αύξηση της επικάλυψης και μείωση της διαμέτρου των ράβδων του οπλισμού.

Η αύξηση της οριακής τιμής τους επιτυγχάνεται με αύξηση της αντοχής του σκυροδέματος.

Η παρουσία εγκάρσιου οπλισμού (συνδετήρων) δρα ευνοϊκά περιορίζοντας το άνοιγμα των αναπτυσσόμενων ρωγμών στη επιφάνεια οπλισμού και σκυροδέματος.

2) Ερώτημα...καλά όλα αυτά αλλά, πως αντιμετωπίζουμε την διαφορετικότητα της ελαστικότητας του σκυροδέματος και του χάλυβα πάνω στην ακτίνα καμπυλότητας?

Δηλαδή κατά την ταλάντωση του φέροντα τα κάθετα στοιχεία ( κολόνες ) εμφανίζουν την ακτίνα καμπυλότητας η οποία εξωτερικά των στοιχείων τείνει να μεγαλώσει, αξιώνοντας από την επικάλυψη του σκυροδέματος να είναι πιο πλάστιμη και από τον χάλυβα αν δεν θέλουμε την αστοχία του.

Αφού ξέρουμε ότι η πλαστιμότητα του Ο.Σ είναι κατά πολύ μικρότερη της πλαστιμότητας του χάλυβα, αυτό δεν είναι μεγάλο πρόβλημα συμβάλλοντας στην αστοχία?

Για εμένα είναι μεγάλο πρόβλημα για τρεις βασικούς λόγους.

α) διότι το σκυρόδεμα αδυνατεί να είναι τόσο ελαστικό ώστε να επιμηκυνθεί όσο απαιτεί η ακτίνα καμπυλότητας, και αφετέρου

β) η συνάφεια καταστρέφεται διότι δημιουργούνται μεγάλες διατμητικές τάσεις μεταξύ χάλυβα και σκυροδέματος λόγο
διαφορετικής ακτίνας καμπυλότητας που έχουν αυτά τα υλικά λόγο της θέσεως που κατέχουν στο υποστύλωμα.

και γ) Αν ένα υλικό είναι πλάστιμο όπως είναι ο χάλυβας, και το άλλο υλικό είναι μη πλάστιμο όπως είναι το σκυρόδεμα,...πιστεύω ότι αυτή η σχέση δημιουργεί μεγάλες ακτινωτές διατμητικές τάσεις στην συνάφεια των δύο υλικών.

Τελικά η πλαστιμότητα δεν είναι τόσο πλάστιμη σε υλικά διαφορετικής πλαστιμότητας.
Μήπως οι υπερστατικοί ( προτεταμένοι με το έδαφος ) φορείς είναι καλύτεροι ?

Υ.Γ
Ξέρουμε ότι σε έναν φορέα εάν αρχίσει το φαινόμενο του λυγισμού, ο οπλισμός τείνει να επιμηκυνθεί, για να ακολουθήσει τον λυγισμό του κάθετου στοιχείου.

Επειδή όμως ο χάλυβας υπόκεινται σε μεγάλες εφελκυστικές τάσεις, αντιδρά στην παραμόρφωση που του επιβάλουν τα εξωτερικά φορτία του σεισμού.

Ερώτημα που αντιδρά ακριβώς ο οπλισμός?
Αντιδρά
α) στην συνάφεια που υπάρχει μεταξύ αυτού και του σκυροδέματος
β) στο περισφιγμένο σκυρόδεμα, που προσπαθεί πλάγιο αξονικά με καμπτικές τάσεις να του μεγαλώσει την ακτίνα καμπυλότητας.
Ερώτημα
Αν αυτό εφαρμόζει το περισφιγμένο σκυρόδεμα στον χάλυβα το ίδιο δεν εφαρμόζει και ο χάλυβας στην επικάλυψη του σκυροδέματος?
Αυτό με την σειρά του εγκρίνεται.
Για τους λόγους αυτούς, θα ήταν καλό να περιορίσουμε την πλαστιμότητα
Βλάπτει σοβαρά τις κατασκευές, αν αυτές δεν είναι κατασκευασμένες από λάστιχο.

Από την προηγούμενη ανάρτηση βγάζουμε το συμπέρασμα ότι.
Ο σημερινός γραμμικός οπλισμός των κάθετων στοιχείων πρέπει να είναι μικρής διατομής ( οπότε περισσότερες βέργες χάλυβα στα ίδια σχεδιαζόμενα κιλά οπλισμού ) ώστε σε συνδυασμό με τον πυκνό εγκάρσιο οπλισμό ( τσέρκια ) να εγκλωβίζουν το περισφιγμένο σκυρόδεμα ώστε όταν αυτό αστοχήσει να διατηρεί τα κομμάτια του σκυροδέματος στον χαλύβδινο κλωβό για την αποφυγή της κατάρρευσης του δομικού έργου.


Για τον σημερινό σχεδιαζόμενο υπολογισμό της σεισμικής απόκρισης μιας κατασκευής απαιτείται η επίλυση των δυναμικών εξισώσεων ισορροπίας.
Στην φόρτιση ενός σεισμού, πρέπει να υπολογίσουμε τα εντατικά, και παραμορφωσιακά μεγέθη, καθώς και την μετατόπιση του άξονα καμπυλότητας σε κάθε φάση του σεισμού, σε συνδυασμό με την αλληλεπίδραση εδάφους κατασκευής.

Με τις λίγες γνώσεις που έχω, καταλαβαίνω ότι προσπαθείτε να σχεδιάσετε τις κατασκευές στα όρια των εντατικών μεγεθών παραμόρφωσης της πλαστιμότητας των υλικών στις φορτίσεις του σεισμού.

Εδώ είναι που πρέπει να καταλάβετε κάτι πολύ απλό.
α) Ενώ εσείς βάζετε τον χάλυβα να συνεργασθεί με το σκυρόδεμα μέσο της συνάφειας των δύο υλικών ώστε κατάλληλα τοποθετημένα να παραλάβουν το καθένα τον εφελκυσμό και την θλίψη, εγώ κάνω κάτι άλλο .....
Κάνω προένταση
Με την προένταση καταργούμε στην ουσία την συνάφεια των δύο υλικών, και βάζουμε το κάθε ένα από αυτά τα δύο υλικά ξεχωριστά να παραλάβουν αυτό που μπορούν καλύτερα να παραλάβουν...δηλαδή ο χάλυβας τον εφελκυσμό, και το σκυρόδεμα την θλίψη.
β) Με το υδραυλικό σύστημα που τοποθετώ στο δώμα βασικά κάνω το εξής ....

1) Καταργώ τα εντατικά μεγέθη τις παραμορφώσεις και τις μετατοπίσεις των φορτίσεων του σεισμού στον φέροντα οργανισμό, γιατί ελέγχω την ταλάντωση με το υδραυλικό σύστημα και μεταβιβάζω μέσο αυτού όλα αυτά τα μεγέθη σε δύο βασικούς κάθετους άξονες.

Ο πρώτος άξονας είναι ο άξονας του τένοντα ο οποίος αναλαμβάνει όλα τα μεγέθη του εφελκυσμού, εξαντλώντας 100% την αντοχή του διότι δεν εξαρτάτε από την συνάφειά του με το σκυρόδεμα.
Ο δεύτερος κάθετος άξονας είναι το τοιχίο, κολόνα, το οποίο αναλαμβάνει αποκλειστικά μόνο τα κάθετα θλιπτικά φορτία του σεισμού, και του ιδικού βάρους τις κατασκευής.


Γενικές παρατηρήσεις

Ο σεισμός στην πράξη δεν παραμορφώνει τον φέροντα οργανισμό.
Η παραμόρφωση εφαρμόζετε από την άρνηση σου φέροντα και των υλικών που φέρει να ακολουθήσει την φορά και την επιτάχυνση του εδάφους.
Σήμερα σχεδιάζουμε με απλοποιημένες μεθόδους, ( εμπειρικές ) χωρίς να υπολογίζουμε την πλήρη δυναμική ανάλυση των κατασκευών.
Σχεδιάζουμε με «ισοδύναμη» στατική ελαστική ανάλυση αντί της πλήρους δυναμικής ανελαστικής ανάλυσης.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.

Τα ερώτημα που θέτω είναι τα εξής.
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?
γ) Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Απαντήσεις
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
Η απάντηση που θα έδινε ένας μηχανικός σήμερα θα ήταν η εξής.
Οι ελαστικές κατασκευές θεωρούνται ως ένα ιδεατό ελαστικό σύστημα, όταν αυτές είναι μέσα στα επιτρεπτά όρια ενός εμπειρικού φάσματος απόκρισης με ανεκτό συντελεστή συμπεριφοράς.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.
Αυτή η δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει λέγεται πλαστιμότητα, και είναι ένας μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.

Εγώ θα απαντούσα ως εξής
Είναι πολύ σωστό να έχουμε έναν μηχανισμό απόσβεσης εισερχόμενης σεισμικής ενέργειας.
Αλλά...θα ήταν καλύτερα αν είχαμε δύο ή και τρεις μηχανισμούς απόσβεσης εισερχόμενης σεισμικής ενέργειας.
1) Πρώτος μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.είναι η πλαστιμότητα του φέροντα.
2) Δεύτερος μηχανισμός απόσβεσης είναι ο υδραυλικός μηχανισμός του υδραυλικού ελκυστήρα ο οποίος εφαρμόζει μία ελαστική αυξομειωμένη αντίσταση στο δώμα εμποδίζοντας αυτό να ανέλθει όταν ταλαντεύεται ο φέροντας οργανισμός http://postimage.org/image/sf8visncn/
3) Τρίτος μηχανισμός απόσβεσης είναι μία άλλη μέθοδος κατασκευής του φέροντα οργανισμού.
Σε αυτήν την μέθοδο τοποθετούμε μέσα στον ελαστικό φέροντα οργανισμό έναν ή περισσότερους άλλους φέροντες ( με μικρότερη ελαστικότητα ) ανεξάρτητους από τον φέροντα, που τους περιβάλει.
Οι ανεξάρτητοι συνεχόμενοι καθ ύψος μικροί φέροντες ( για αρχιτεκτονικούς λόγους μπορεί να είναι π.χ φρεάτια ανελκυστήρων, αποθήκες, δωμάτια κ.λ.π ) πρέπει να είναι στιβαρές κατασκευές τοποθετημένες σε διάφορα σημεία του φέροντα, με τις κατάλληλες διαστάσεις και αντοχές, ώστε να μπορούν να παραλάβουν μεγάλα θλιπτικά φορτία για να αντέξουν την προένταση και την αντίδραση της θεμελίωσης στην βάση, καθώς και στρεπτομεταφορικές ταλαντώσεις.

Η σύγκρουση που θα υφίσταντο οι φέροντες μεταξύ των αποφεύγετε με την τοποθέτηση ελαστικών ή υδραυλικών αποσβεστήρων.
Στο link αυτό http://postimage.org/image/14tj1webo/ φαίνονται καθαρά οι μαύροι ελαστικοί μηχανισμοί απόσβεσης εισερχόμενης σεισμικής ενέργειας, τοποθετημένοι στο ύψος των πλακών.
Αυτή η μέθοδος είναι κατάλληλη για πολύ ψιλές κατασκευές, διότι
1) Με την τοποθέτηση των κατάλληλων μαλακών ή σκληρών αποσβεστήρων σεισμικής ενέργειας καθ ύψος, καταργούμε τον μηχανισμό ορόφου
2) Η πλαστιμότητα του μεγάλου φέροντα, οπότε ο αρχικός μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας δεν καταργείται.
3) Αν τοποθετήσουμε υδραυλικούς ελκυστήρες σε όλους τους ανεξάρτητους φέροντες ( και σε αυτόν που τους περιβάλει και στους εσωτερικούς σε επί μέρους κατάλληλα σημεία ) τότε έχουμε τριπλή απόσβεσης εισερχόμενης σεισμικής ενέργειας, τόσο στην πλαστιμότητα του φέροντα, όσο και στο δώμα στο υδραυλικό τμήμα του Υ/Ε αλλά και πλάγιο αξονική απόσβεση των μετακινήσεων των πλακών πάνω στους ελαστικούς αποσβεστήρες.

Υπάρχουν και άλλοι λόγοι που σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?

Ο κυριότεροι λόγοι είναι δύο
α) ότι δεν έχουμε κατανοήσει ακριβώς πως ο σεισμός παραμορφώνει τον φέροντα, ( επαρκή ανάλυση φορτίσεων )και
β) δεύτερον δεν έχουμε κατανοήσει επαρκώς τους μηχανισμούς που γεννούν τις τέμνουσες.

Αν ξέραμε .... τότε θα ξέραμε και την μέθοδο να αντιμετωπίσουμε το πρόβλημα, και η ελαστική κατασκευή θα ήταν δευτερεύων παράγοντας σχεδίασης.
Αδυνατώντας να κάνουμε την πραγματική ανάλυση των δυναμικών συνιστωσών, έχουμε βρει την εύκολη λύση στην πλαστιμότητα, και στο να λέμε ότι η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση

Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Τα λάθη που κάνουμε είναι ότι θεωρούμε την κατασκευή πακτωμένη με το έδαφος ( λόγο φορτίων ) ενώ αυτή δεν είναι επαρκώς πακτωμένη.
Μερικός πακτωμένες κατασκευές με τον σημερινό σχεδιασμό, θεωρώ μόνο τις κατασκευές που έχουν δύο, τρία υπόγεια.
Αυτές οι κατασκευές έχουν αποδειχθεί πιο ισχυρές..... γιατί?
Μήπως έχω δίκαιο σε αυτά που λέω για την πάκτωση ή την προένταση της κατασκευής με το έδαφος?
Γιατί άλλη κατασκευή είναι αυτή που πατάει στο έδαφος, και άλλη είναι η κατασκευή που συνδέεται με το έδαφος μέσο του τένοντα.


β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?

Όλες οι παραμορφώσεις του φέροντα καταλήγουν σε τέμνουσες ...λόγο αντίδρασης των υλικών του προς την αδράνεια του να ακολουθήσει την φορά και την επιτάχυνση του σεισμού.

Το σχήμα που σχεδιάζουμε τις κατασκευές είναι ο μηχανισμός που δημιουργεί τρεις διαφορετικές τέμνουσες.
α) Την τέμνουσα που δημιουργεί η αδράνεια του φέροντα, και είναι καθαρά θέμα αδράνειας και επιτάχυνσης ( μεταφορικός λόγος )
β) Την τέμνουσα που δημιουργείται στους κόμβους, και είναι καθαρά θέμα ταλάντωσης και στατικών φορτίων που γεννούν ροπές στους κόμβους που καταλήγουν σε τέμνουσες.
γ) Στα πολυώροφα κτίρια με ασύμμετρες κατόψεις τα οποία υποβάλλονται σε οριζόντιες σεισμικές δυνάμεις, τα δάπεδα των ορόφων υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις, οπότε και στρεπτικές τέμνουσες

Πως η ευρεσιτεχνία βοηθάει τον φέροντα να αντισταθεί σε αυτές τις τέμνουσες

α) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
β) Εφαρμόζοντας προένταση ή πάκτωση σταματάμε τις μετακινήσεις του φέροντα ( την ταλάντωση ) οπότε και τις ροπές στους κόμβους, αφού αυτοί δεν παραμορφώνονται πια.
γ) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
Μεταφορικές τέμνουσες είναι και οι στρεπτικές τέμνουσες.
Αν εφαρμόσουμε και την μέθοδο που περιέχει τον τρίτο μηχανισμό απόσβεσης ( που ανέφερα σε αυτήν την ανάρτηση ) αυτή είναι πολύ πιο αποτελεσματική στις στρεπτικές τέμνουσες.

Μάλιστα η τρίτη μέθοδος απόσβεσης σεισμικής ενέργειας, είναι η μόνη μέθοδος η οποία εκτός των άλλων είναι η μόνη που μπορεί να συνεργαστεί με εφέδρανα για να έχουμε και οριζόντια σεισμική μόνωση .

Συν του ότι ...Αν μπορέσουμε να ελέγξουμε την παραμόρφωση του εδάφους καθ όλον το εμβαδόν της κατασκευής, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

Συν του ότι... Αν μπορέσουμε να ελέγξουμε αυτόματα με έναν μηχανισμό τα προβλήματα της προέντασης π.χ την έρπη του τένοντα κατά την μακροχρόνια τάνυση, ή την συρρίκνωση του σκυροδέματος κατά την μακροπρόθεσμη ξήρανση που χαλαρώνει τον τένοντα, τότε έχουμε
έναν υπερστατικό φορέα πολύ πιο ικανό στον χρόνο.

Ένας φέρον οργανισμός, κατά την μεγαλύτερη διάρκεια της ζωής του είναι ήρεμος χωρίς σεισμικές διεγέρσεις.
Τα φορτία που δέχεται είναι απολύτως κάθετα, και η αντίδραση του εδάφους είναι αρκετή για να ισορροπήσει.

Το μεγάλο πρόβλημα αρχίζει όταν έχουμε σεισμό, διότι αφενός οι κάθετες φορτίσεις πολλαπλασιάζονται, και αφετέρου γεννιούνται πρόσθετες φορτίσεις οι οποίες δεν είναι κάθετες, αλλά είναι φορτίσεις που δρουν πάνω στις κολόνες με οριζόντιες συνιστώσες.

Οι κολόνες όμως είναι κατασκευασμένες για κάθετα φορτία, και δεν μπορούν να παραλάβουν ικανοποιητικά τις πλάγιες φορτίσεις στις διατομές τους.
Η πλαστιμότητα των κολονών είναι μία λύση, η οποία όμως έχει το μειονέκτημα της μεγάλης παραμόρφωσης και των πολλαπλών επισκευών.
Δεύτερον η πλαστιμότητα των κολονών έχει όρια και στάθμη αστοχίας.

Από την άλλη, αν σχεδιάσουμε μονολιθικά ( άκαμπτη κατασκευή ) κάτι συμβαίνει και αστοχεί πιο εύκολα από μία σχεδιαζόμενη πλάστιμη
( ελαστική ) κατασκευή.
Μία άκαμπτη κατασκευή λογικά έπρεπε να είναι πιο γερή από μία εύκαμπτη, διότι οι κολόνες σε μία εύκαμπτη ( πλάστιμη ) κατασκευή έχουν μικρότερη διατομή από ότι έχουν οι κολόνες σε μία άκαμπτη κατασκευή.

Εδώ εστιάζει η έρευνα που κάνω.....και θέτω το ερώτημα...( για πιο λόγο η άκαμπτη κατασκευή είναι πιο ευάλωτη στον σεισμό από ότι είναι η πλάστιμη? )
Η έρευνας που έκανα

Πως με την εφαρμογή του ελκυστήρα μεταφέρονται οι τέμνουσες, από την οριζόντια στην κάθετη διατομή της κολόνας

Σας συνιστώ να αντιγράψετε μέσο εκτυπωτή σε χαρτί Α4 το σχεδιάγραμμα της πλαισιωτής κατασκευής, ώστε να εξετάζετε καλύτερα αυτά που θα πω πάρα κάτω.
ΣΧΕΔΙΑΓΡΑΜΜΑ http://postimage.org/image/8akpj21th/

Κατά την ταλάντωση οι κολόνες μετατοπίζουν τον κάθετο άξονά τους μερικές μοίρες.
Βλέπουμε ότι η μετατόπιση αυτή πάει να σηκώσει το τοιχίο από το έδαφος και να σχηματίσει την καταστροφική γωνία ( 3 )
Ως τώρα αυτήν την καταστροφική γωνία την σταματούσε να δημιουργηθεί η αντίδραση του κόμβου, ή καλύτερα η αντίδραση όλων των κόμβων.

Αυτός είναι και ο λόγος που γεννιούνται οι ροπές και οι τέμνουσες στους κόμβους.
Το κακό είναι ότι αυτές οι τέμνουσες δρουν σε σημεία της κολόνας και της δοκού, που είναι πολύ ευάλωτα.
Αυτά τα ευάλωτα σημεία είναι οι μικρές διατομές τους, δηλαδή η διατομή κάτοψις κολόνας, και πλάγια διατομή δοκού και πλάκας.

Το αποτέλεσμα είναι όταν η σχεδιαζόμενη στάθμη επιπόνησης περάσει στην στάθμη αστοχίας τότε η αστοχία παρατηρείται στα σημεία των στοιχείων ( α ),( β ),( γ ),( δ ),( ε ),( ζ ),( η ),( θ )

Ακόμα αν το έδαφος είναι μαλακό, έχουμε και την παραμόρφωση του εδάφους

Πως καταργεί ή αλλάζει την κατεύθυνση στις τέμνουσες ο ελκυστήρας

( Οι κόκκινες δυνάμεις είναι αυτές που εξασκεί ο ελκυστήρας )

Αν εφαρμόσουμε ένα θλιπτικό φορτίο στο δώμα, ( Δ ) ή έστω μία αντίδραση στο δώμα να σηκωθεί, τότε καταργείτε αυτόματα η δημιουργία της καταστροφικής γωνίας ( 3 )
Η κατάργηση της καταστροφικής γωνίας, καταργεί αυτόματα τις ροπές και τις τέμνουσες σε όλους τους κόμβους, οπότε και όλες τις αστοχίες στα σημεία ( α ),( β ),( γ ),( δ ),( ε ),( ζ ),( η ),( θ )

Θα μου πείτε τώρα και που πήγαν οι ροπές και οι τέμνουσες που δημιουργούν τις αστοχίες?

Έκανε τον κόπο να της παραλάβει το τοιχίο, και να τις μεταβιβάσει μέσο της κάθετης διατομής του στο χώμα, πριν καταπονήσουν τους κόμβους.
Βλέπετε στο κάτω μέρος της βάσης τις κόκκινες δυνάμεις καθώς και την φορά τους,....ε λυπών αυτές οι δυνάμεις είναι αντίθετες στις τέμνουσες δυνάμεις που καθοδηγήσαμε από τους κόμβους στην βάση. Αν είναι ίσες και αντίθετες, ισορροπούν.

Πως έγινε η αλλαγή φοράς στις τέμνουσες?
Απλά αν δεν δημιουργηθεί η καταστρεπτική γωνία ( 3 ), τότε οι τέμνουσες αλλάζουν πορεία, και αντί να γίνουν ροπές και μετά τέμνουσες στους κόμβους, αυτές κατευθύνονται κάθετα του τοιχίου που η διατομή του είναι μεγάλη και ισχυρή, ( και δουλεύουν και καλύτερα τα τσέρκια, φέρνοντας αντίσταση στις κάθετες τέμνουσες. )

Αυτό γίνετε διότι κατά την ταλάντωση υπάρχει η αντίσταση του ελκυστήρα ( 4 ) στο δώμα ( Δ ), και η άλλη αντίσταση του εδάφους αλλά και του ελκυστήρα ( 5 ) στο αντικριστό ( Π ) της βάσης.

Σας είπα μέχρι τώρα, πως σταματάμε να έχουμε αστοχίες οι οποίες προέρχονται από την ταλάντωση.

Μια απλή πάκτωση δώματος εδάφους, θα ήταν αρκετή να σταματήσει την μεγάλη ταλάντωση και τις παραμορφώσεις, σε πιο ήπιες συνιστώσες.
Εγώ όμως γιατί επιμένω στην κάθετη προένταση μεταξύ δώματος και εδάφους?

Γιατί?

α) Διότι ...Έχουμε επιπλέον μεγαλύτερη ενεργή διατομή του τοιχίου με την προένταση, παρά με τον απλό οπλισμό.
β) Διότι ... Έχουμε μεγαλύτερη αντοχή στην τέμνουσα βάσης με την προένταση, παρά με τον απλό οπλισμό.
Και πολλά άλλα γιατί ...τις προέντασης.

Διαλέξτε...απλή πάκτωση, ή προένταση?

Παρατήρησα ότι αν πακτώναμε την κολόνα στο ύψος του δώματος με το έδαφος, ή έστω αν πακτώναμε την βάση με το έδαφος η κολόνα θα έφερνε μόνη της μεγαλύτερες αντιστάσεις στις πλάγιες φορτίσεις του σεισμού, από ότι φέρνει τώρα που απλά πατάει στο έδαφος.
( γιατί αν νομίζεται ότι είναι επαρκώς πακτωμένη μέσα στην θεμελίωση, κάνετε μεγάλο λάθος. )

Παράδειγμα

Αν είχαμε ένα βουνό που η μία πλευρά του ήταν εντελώς κάθετη.
Εσείς θα μπορούσατε να σχεδιάσετε έναν φέροντα ο οποίος θα στεκόταν οριζοντίως στα τοιχώματα του γκρεμού χωρίς να έχει πάκτωση με τον γκρεμό? ... προφανώς όχι.
Εγώ μπορώ ... με τον ίδιο τρόπο που εσείς σχεδιάζεται τα μπαλκόνια, ή αλλιώς τους προβόλους.
Στον πρόβολο υπάρχουν κάθετα φορτία και σχηματίζουν ροπές στον κόμβο.
Το ίδιο γίνεται και στον σεισμό πάνω στον φέροντα, μόνο που τώρα τα φορτία είναι οριζόντια....αλλά δεν παύουν να είναι φορτία και να γεννούν τέμνουσες ίδιες με τις τέμνουσες του προβόλου, πάνω στον κόμβο.

Δηλαδή ανακάλυψα κάτι που εσείς το ξέρετε πολλά πολλά χρόνια....και το εφαρμόζετε στους κόμβους ( πάκτωση ή προένταση των κάθετων και οριζόντιων στοιχείων στον ύψος του κόμβου, που σχηματίζουν μεταξύ των )
Αλλά .... δεν το εφαρμόζεται, διότι απλά ξεχάσατε να πακτώσετε έναν κόμβο... τον κόμβο που σχηματίζεται ανάμεσα στην βάση με το έδαφος.
Και να θυμάστε πάντα ότι οι δυνάμεις υπάρχουν, αναλύονται,.... αλλά δεν φαίνονται.

Τώρα καταλάβατε γιατί, ένας άκαμπτος φορέας μπορεί να γίνει πιο ισχυρός στον σεισμό από ότι ένας πλάστιμος φορέας?
Καταλάβατε που έπασχε ο άκαμπτος φορέας και αστοχούσε, και οδηγηθήκαμε από ανάγκη να σχεδιάζουμε πλάστιμα?
Έστω,.. αν και βρήκα το πρόβλημα που έκανε τους άκαμπτους φορείς ευάλωτους, και τώρα μπορούμε να τους κάνουμε ακόμα πιο ισχυρούς,... εγώ θα σεβαστώ τους λάτρες της πλαστιμότητας και με την ευρεσιτεχνία μου τους προσφέρω έξτρα πλαστιμότητα με την μέθοδο που περιγράφω στις δύο προηγούμενες αναρτήσεις


Ο στόχος του ικανοτικού σχεδιασμού είναι να εξασφαλίσει ότι ο φέρον οργανισμός είναι ικανός να απορροφήσει την μεγαλύτερη δυνατή σεισμική ενέργεια χωρίς να αστοχήσει, δημιουργώντας έναν αξιόπιστο μηχανισμό απόκρισης
Για να το κατορθώσει βασίζεται
α) Στα αποθέματα αντοχής της κατασκευής.
β) Καθορίζει τις κρίσιμες περιοχές αστοχίας και ιεραρχεί την σειρά στις διαρροές ( πιθανές και ενδεχόμενες )
γ) Επιδιώκει οι πιθανές βλάβες να διαμοιραστούν σε όσο το δυνατόν περισσότερα στοιχεία.

Αξιόπιστος μηχανισμός απόκρισης είναι αυτός ο ποίος εξασφαλίζει
α) ανάπτυξη μηχανισμού δοκών.
β) αποφυγή ανάπτυξης μηχανισμού ορόφου.

Την ανάπτυξη μηχανισμού δοκών την εξασφαλίζουμε όταν
α) η τοιχοποιία έχει μετελαστική συμπεριφορά.
β) αρκετή πλαστιμότητα στις κρίσιμες περιοχές των δοκών.
γ) Ικανή αντοχή των δοκών και των υποστυλωμάτων στις τέμνουσες, ώστε να μην αστοχήσουν.

Την αποφυγή ανάπτυξης μηχανισμού ορόφου την εξασφαλίζουμε όταν
α) σχεδιάσουμε με την κατάλληλη διαστασιολόγιση και θέση στην ( μικτό σύστημα μόρφωσης του φορέα) τοιχοποιία και τα υποστυλώματα ώστε αυτά να είναι ικανά να παραλάβουν στρεπτομεταφορικές παραμορφώσεις και τέμνουσες.
β) σχεδιασμό των υποστυλωμάτων έτσι ώστε να αντέχουν τις ροπές.
γ) Περίσφιξη στις ενδεχόμενα πιθανές θέσεις, ώστε να εξασφαλίσουμε επαρκή πλαστιμότητα στα εντατικά μεγέθη που θα προκύψουν από ενδεχόμενο πολύ μεγάλο σεισμό.

Με αυτήν την μέθοδο ο ικανοτικός σχεδιασμός αυτό που επιδιώκει να εξασφαλίσει είναι να κατανέμει τις φορτίσεις του σεισμού ομοιόμορφα σε όλα τα στοιχεία, και όταν αυτά αστοχήσουν, η αστοχία να αρχίσει από τους δοκούς ιεραρχικά και όχι από τα υποστυλώματα, για δύο βασικούς λόγους.
α) Γιατί η δοκός που αστοχεί, απορροφά περισσότερη σεισμική ενέργεια μετά την διαρροή.
β) Γιατί η αστοχία της δοκού δεν σημαίνει και ολική κατάρρευση η οποία υφίσταται όταν αστοχήσει το υποστύλωμα.

Συμπέρασμα
Η κατασκευή δεν καταρρέει, ( οπότε σώζονται ζωές ) αλλά γίνετε κομμάτια και άλλοτε θέλει επισκευή, άλλοτε θέλει κατεδάφιση.
Βασικά η κατασκευές σχεδιάζονται όπως και τα αυτοκίνητα τα οποία κατασκευάζονται με λεπτή λαμαρίνα ώστε κατά την σύγκρουση να εφαρμόζουν παθητική απόσβεση ενέργειας ώστε να προφυλάσσουν τους επιβάτες από την μεγάλη αδράνεια.

Η συνέχεια με πολλά ερωτηματικά ???? για την αξιοπιστία του ικανοτικού σχεδιασμού.

Από τα πάρα πάνω βγάζω το συμπέρασμα ότι ο ικανοτικός σχεδιασμός δεν είναι καθόλου ικανός να σώσει την κατασκευή τουλάχιστον από βλάβες και επισκευές, και αρκείτε στο να διασώσει τις ανθρώπινες ζωές ( όσο αυτό είναι δυνατόν να επιτευχθεί από αυτήν την μέθοδο του ικανοτοκού σχεδιασμού )

Το ερώτημα είναι ένα μεγάλο γιατί τον λένε ικανοτικό και όχι ανίκανο ???
Είναι ικανοτικός διότι αδυνατεί να κατανοήσει και να σχεδιάσει την πλήρη δυναμική ανάλυση των κατασκευών?
Είναι ικανοτικός για οικονομικούς λόγους, ή είναι ανίκανος να επιλύσει τις δυναμικές εξισώσεις ισορροπίας?
Πια είναι η αλήθεια?
Υπάρχουν πολλοί μηχανικοί που λένε ότι είναι θέμα οικονομικό.
Με λίγα λόγια λένε ότι αν αυξήσουν τον οπλισμό και τις διαστάσεις των υποστυλωμάτων το πρόβλημα θα λυθεί.
Οι επισκευές μετά τον σεισμό δεν είναι οικονομικό θέμα?
Η επιστήμη είναι θέμα κόστους και μόνο, ή μήπως το ικονομικό είναι η δικαιολογία για κάτι που αδυνατεί η επιστήμη να επιλύσει?
Εγώ θα βάλω μερικά καίρια ερωτήματα πάνω στον σημερινό ικανοτικό σχεδιασμό

1) Η σινάφια του σκυροδέματος με τον χάλυβα δεν είναι η ίδια καθ όλον το ύψος του υποστυλώματος όμως οι εφελκυστικές τάσεις είναι ίδιες καθ όλον το ύψος στα υποστυλώματα.
Π.χ αν η κρίσιμη περιοχή αστοχίας του υποστυλώματος είναι κοντά στην βάση, τι κάνει ο ικανοτικός σχεδιασμός με την σινάφια του χάλυβα και του σκυροδέματος?

Θα σας πω ένα παράδειγμα με ένα κερί για να καταλάβετε τι θέλω να πω.

Αν πάρουμε ένα κερί και το σπάσουμε με τα χέρια μας στο κέντρο, ( εκεί που το σπάμε με το χέρι μας είναι η κρίσιμη περιοχή ) την στιγμή που το σπάμε στο φιτίλι ενεργούν τάσεις εφελκυσμού, και στο κερί τάσεις θλίψης.
Αυτές οι τάσεις εφελκυσμού δεν εφαρμόζονται τυχαία, αλλά έχουν ένα αίτιο, και αυτό είναι η παραμόρφωση της καμπύλης συμπεριφοράς η οποία αστοχεί πάντα στην κρίσιμη περιοχή.
Ας εξετάσουμε τον εφελκυσμό και την κρίσιμη περιοχή.
Η κρίσιμη περιοχή διαχωρίζει τις τάσεις εφελκυσμού καθ ύψος στα υποστυλώματα σε δύο μέρη.
Δηλαδή το φιτίλι εφελκύεται από το κάτω μέρος του κεριού προς την κρίσιμη περιοχή, και από το άνω άκρο του κεριού προς την κρίσιμη περιοχή.
Αν σπάσουμε το κερί στο κέντρο, τότε η σινάφια του άνω μέρους με την σινάφια του κάτου μέρους του κεριού και του φιτιλιού φέρουν την ίδια αντίσταση ως προς την κρίσιμη περιοχή.
Αν όμως η κρίσιμη περιοχή του κεριού δεν είναι το κέντρο του, αλλά είναι κοντά στο κάτω άκρο του τότε τι γίνεται?
Τότε το πάνω μέρος του κεριού έχει περισσότερο φιτίλι από ότι το κάτω μέρος οπότε η σινάφια στο κάτω μέρος είναι μικρότερη και στο πάνω μεγαλύτερη.
Το αποτέλεσμα είναι ότι... αν σπάσουμε το κερί στην βάση του το κάτω μέρος του φιτιλιού θα βγει πρώτο έξω από το κερί.
Αυτό δεν είναι που συμβαίνει και στα υποστυλώματα?
Που αστοχούν πιο πολύ ....κοντά στην βάση, και πάντα είναι τραβηγμένος ο χάλυβας έξω από το σκυρόδεμα ...και ποτέ μα ποτέ κομμένος.
Αυτά που είπα δικαιολογούν απολύτως αυτά που είπα σε προηγούμενη ανάρτηση για την σινάφια.
Δηλαδή αν η συνάφεια μεταξύ χάλυβα και Ο.Σ είναι μικρότερη από την εφελκυστική ικανότητα του χάλυβα, τότε δεν καταλαβαίνω τι νόημα έχει ο επιπλέον οπλισμός ( για την παραλαβή μεγαλύτερων εφελκυστικών τάσεων ) πέραν της αντοχής της συνάφειας μεταξύ χάλυβα και Ο.Σ.
Δεδομένου ότι και η κρίσιμη περιοχή αστοχίας είναι πάντα κοντά στην βάση, πως αντιμετωπίζει ο ικανοτικός σχεδιασμός αυτό το πρόβλημα στην σινάφια?
Με την προτεινόμενη από εμένα προένταση των υποστυλωμάτων καταργούμε αυτό το πρόβλημα, διότι οι πακτώσεις είναι το ίδιο ισχυρές και στα δύο άκρα, ανεξαρτήτως που θα εμφανισθεί η κρίσιμη περιοχή.


Σε κάθε περίπτωση σχεδιάζοντας με τον αδρανή οπλισμό, όταν υπάρχει παραμόρφωση του υποστυλώματος υπάρχει η κρίσιμη περιοχή
( μαλακή περιοχή αστοχίας ) κοντά στην βάση.

Στην κρίσιμη περιοχή του υποστυλώματος ( κοντά στην βάση ) υπάρχει μία συνάντηση καταστροφικών φορτίσεων που όσο και να θέλει ο ικανοτικός σχεδιασμός δεν μπορεί να τις αποφύγει. ( είναι το μαλακό υπογάστριο της κατασκευής )

Πως διαμορφώνονται αυτές οι φορτίσεις.

Υπάρχει η βάση της κατασκευής και ένα μικρό εξέχον τμήμα του υποστυλώματος όπου έχουμε μηδενική ελαστικότητα, και πλήρη ακαμψία για τρις λόγους.

Ο πρώτος λόγος είναι ότι η βάση είναι θαμμένη μέσα στο έδαφος ( όχι πακτωμένη, μόνο θαμμένη )

Ο δεύτερος λόγος είναι ότι λόγο του μεγάλου όγκου που έχει η βάση και λόγο της γεωμετρικής της σχεδίασης είναι άκαμπτη.

Ο τρίτος λόγος είναι ότι αυτή η κρίσιμη περιοχή δέχεται πολύ μεγάλα φορτία από το στατικό βάρος της κατασκευής που το σκυρόδεμα είναι σαν το προτεταμένο, δηλαδή άκαμπτο.
Το ίδιο άκαμπτο είναι και το εξέχων τμήμα του υποστυλώματος που ευρίσκεται κοντά στην βάση, διότι δεν έχει το κατάλληλο μήκος ώστε να είναι πλάστιμο.

Από ένα ύψος και πάνω αρχίζει να είναι πλάστιμο.

Στο ύψος που το υποστύλωμα αρχίζει να είναι πλάστιμο... εκεί είναι που δημιουργείται η κρίσιμη περιοχή αστοχίας, διότι εκείνο το σημείο είναι που συναντιόνται δύο διαφορετικά συστήματα που είναι ο άκαμπτος φορέας της βάσης αφενός, και ο ελαστικός αφετέρου φορέας της άνω δομής.

Τι συμβαίνει σε αυτό το σημείο της κρίσιμης περιοχής?
Να σας πω εγώ τι συμβαίνει.

Φανταστείτε ότι το υποστύλωμα είναι ένας μοχλός, και το υπομόχλιο είναι το πάτωμα του γκρο μπετόν. ( ξέρετε από την φυσική πως εφαρμόζονται οι δυνάμεις με το υπομόχλιο )

Φανταστείτε και την ταλάντωση του κτιρίου και τις τάσεις που εφαρμόζονται στο υπομόχλιο, και τις τάσεις που εφαρμόζονται πλάγιο αξονικά από την αντίσταση του υποστυλώματος προς το γκρο μπετόν.
Προσθέστε και τις τέμνουσες από την επιτάχυνση του σεισμού.

Προσθέστε και ότι αυτή η κρίσιμη περιοχή έχει να διαχειριστεί την απότομη επιτάχυνση χωρίς καμία απολύτως σεισμική απόσβεση, και τα μεγαλύτερα φορτία της κατασκευής. ( βλέπω μία μεγάλη τέμνουσα )

Τι συμβαίνει με όλες αυτές τις φορτίσεις σε αυτήν την κρίσιμη περιοχή?

Όταν το υποστύλωμα εφελκύεται τα μέγιστα στην κρίσιμη αυτή περιοχή από τον μοχλό που υποστυλώματος, το υπομόχλιο δημιουργεί μια μεγάλη τέμνουσα στην διατομή του υποστυλώματος. Έρχεται από πίσω και η άλλη τέμνουσα που δημιουργείτε από την αδράνεια και το κόβει, διότι ενεργούν και οι δύο φορτίσεις μαζί.

Όσο για την σινάφια ( του χάλυβα με το σκυρόδεμα ) στην περιοχή που βρίσκεται μεταξύ βάσης και κρίσιμης περιοχής, καλύτερα να μην μιλήσω.

Κατά τα άλλα, ο ικανοτικός σχεδιασμός είναι μια χαρά....μόνο που δεν μας είπε αν καταρρεύσει το υποστύλωμα του πρώτου ορόφου, πως θα σταθούν στον αέρα οι άλλοι κατά τα άλλα πλάστιμοι όροφοι???

Με την προτεινόμενη από εμένα προένταση των υποστυλωμάτων καταργούμε αυτό το πρόβλημα, διότι οι πακτώσεις είναι το ίδιο ισχυρές και στα δύο άκρα, ανεξαρτήτως που θα εμφανισθεί η κρίσιμη περιοχή.

Φανταστείτε ένα πολύ ψιλό δένδρο, με την μεγαλύτερη πλαστιμότητα που το χτυπάει ο αέρας δεξιά αριστερά και αυτό λυγίζει αλλά δεν πέφτει και δεν σπάει.
Δεν λέω...χρήσιμη η πλαστιμότητα.
Αυτό άλλωστε προσπαθεί να μιμηθεί και ο ικανοτικός σχεδιασμός.
Άντε να σπάσει και κάποιο κλαδί του δένδρου ... και τι έγινε?

Φαντάζεστε όμως το δένδρο χωρίς ρίζες, και την κατασκευή χωρίς ελκυστήρες τι θα πάθαινε?

Ο ικανοτικός λέει ότι
Αξιόπιστος μηχανισμός απόκρισης είναι αυτός ο ποίος εξασφαλίζει
α) ανάπτυξη μηχανισμού δοκών. ( Δηλαδή άντε να σπάσει και κάνα κλαδί, ...δεν πειράζει )
β) αποφυγή ανάπτυξης μηχανισμού ορόφου. ( Δηλαδή προσοχή μην σπάσει ο κορμός )

Μην γελάτε, γιατί στην πραγματικότητα ένας κτιριακός φέρον οργανισμός, είναι πολλοί κορμοί δένδρων που έχουν μπλέξει τα κλαδιά τους. ( για να μην πω τι άλλο έχουν μπλέξει )
Δεν λέω ότι αυτό είναι κακό, αλλά.... πως να το κάνουμε ένα δένδρο χωρίς ρίζες δεν είναι δένδρο.
Ξέρετε ... η φύση μας διδάσκει τα πάντα.
Εμείς απλώς πρέπει να παρατηρούμε τι κάνει και να την ακολουθούμε.
Ξέρετε πια είναι η μεγαλύτερη ανακάλυψη του ανθρώπου?
Ο τροχός......ξέρετε πως ανακαλύφθηκε?
Από έναν κομμένο στρογγυλό θάμνο που τον έπαιρνε ο αέρας.
Τόσο απλές είναι οι εφευρέσεις....και όσο πιο απλές είναι, τόσο πιο σπουδαίες είναι.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 01 Φεβ 2013 22:56

Θα σας πω τι αλήθεια πιστεύω για την ευρεσιτεχνία.
Για μένα ίσως χρησιμεύει σε κατασκευές με φέροντα σκελετό, αν οι διαστάσεις των υποστυλωμάτων είναι οι κατάλληλες.
Σε εφαρμοσμένη έρευνα που έγινε στο Μετσόβιο, τα πρώτα αποτελέσματα ήταν πολύ θετικά.
Η γνώμη μου όμως είναι η εξής.
Το αντισεισμικό για να είναι αποτελεσματικό πρέπει να τοποθετηθεί σε μονολιθικές κατασκευές.
Τα προκατασκευασμένα από Ο.Σ ή τα σύμμεικτα κτίρια είναι οι κατασκευές στις οποίες θα φέρει επανάσταση.....τόσο μεγάλη ώστε να είναι ασύμφορο να κατασκευάζονται συμβατικές κατοικίες με φέροντα σκελετό από Ο.Σ.

Ο λόγος είναι ο εξής.
Είτε εφαρμόσουμε προένταση, είτε εφαρμόσουμε πάκτωση, μεταξύ δώματος και εδάφους, η ευρεσιτεχνία για να είναι αποτελεσματική δεν χρειάζεται τετράγωνα υποστυλώματα, αλλά είναι αποτελεσματική σε μακρόστενα τοιχία από Ο.Σ ή σε σιδεροσκαλωσιές με χιαστοί.

Σε αυτές τις διατομές κάτοψις, μπορούμε να εφαρμόσουμε πολλές πακτώσεις ή προεντάση στον ίδιο φορέα.
Άλλη είναι η καμπύλη συμπεριφοράς ή καμπύλη ικανότητας μίας τετράγωνης προτεταμένης κολόνας με την εφαρμογή μίας μόνο κεντρικής προέντασης, ή πάκτωσης, και άλλη είναι η καμπύλη συμπεριφοράς ή καμπύλη ικανότητας ενός τοίχου από Ο.Σ προτεταμένου σε επί μέρους κατάλληλα μέρει.

Άλλες οι αντοχές μιας μικρής τετράγωνης κολόνας στην εφαρμογή προέντασης, άλλες ενός τοιχίου.
Άλλη η αντίδραση στο δώμα και την βάση μιας τετράγωνης κολόνας, άλλη η αντίδραση ενός μονολιθικού φορέα από Ο.Σ. πακτωμένου ή προεντεταμένου στα τέσσερα τουλάχιστον άκρα του.
Π.χ τα προκατασκευασμένα ή μονολιθικές οπτοπλινθοδομές γενικά.
Δες σχεδιάγραμμα. http://postimage.org/image/r1aadhj8/

Λόγο του ότι τα προκατασκευασμένα είναι βιομηχανικά προιόντα και κοστίζουν 30 με 50% λιγότερο από τις κατασκευές με σκελετό, αν εγώ πακτώνοντας ή προεντείνοντας αυτά τα κάνω πιο αντισεισμικά από τις κατασκευές με σκελετό, θα έχουμε
α) κατασκευές 300% πιο ισχυρές στον σεισμό.
β) 50% κάτω του κόστους
γ) Πολυώροφες κατασκευές προκατασκευασμένων. ( πέραν των δύο ορόφων που επιτρέπετε σήμερα )
δ) Ταχύτητα κατασκευής

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 18 Φεβ 2013 06:48

1) Μοντέλο απόκρισης πλαισιωτής κατασκευής με απορρόφηση ενέργειας στην βάση, στο δώμα, και στα διαφράγματα των πλακών.

Είναι αυτό το μοντέλο κατασκευής http://www.youtube.com/watch?v=KPaNZcHBKRI

2) Κάτοψη μοντέλου ασύμμετρου πολυώροφου κτιρίου με απορρόφηση ενέργειας στην βάση,
στο δώμα, και στα διαφράγματα των πλακών.

Είναι αυτό το μοντέλο http://postimage.org/image/tg1lzxv05/

3) Μοντέλο απόκρισης με απορρόφηση ενέργειας στο δώμα

Είναι αυτό το μοντέλο κατασκευής http://www.youtube.com/watch?v=JJIsx1sKkLk
και αυτό σε κάτοψη http://postimage.org/image/r1aadhj8/

4) Μοντέλο απόκρισης με απορρόφηση ενέργειας σε υφιστάμενες κατασκευές.
Ένα από τα πολλά σχεδιαστικά μοντέλα μετασκευασμένων τοιχίων από Ο.Σ ή μετασκευασμένων σιδηροκατασκευών
http://postimage.org/image/k51vo9k15/

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 19 Φεβ 2013 18:52

Στο Εργαστήριο Στατικής και Αντισεισμικών Ερευνών, στο
Εθνικό Μετσόβιο Πολυτεχνείο από τον κύριο καθηγητή Μανώλη Παπαδρακάκη, έγιναν μη γραμμικές στατικές αναλύσεις ( pushover )
με σκοπό τη σχεδίαση του διαγράμματος τέμνουσας βάσης - μετατόπισης του κόμβου ελέγχου, και την εύρεση της φέρουσας ικανότητας της κατασκευής σε πλευρικά φορτία, με και χωρίς το σύστημά μου.

Διαπιστώθηκε ότι αν το σύστημα εφαρμόζετε σε όλα τα υποστυλώματα, τότε οδηγεί σε σημαντικά αυξημένες τιμές της φέρουσας ικανότητας.

Συγκεκριμένα σε ένα πενταώροφο

εφαρμόσανε θλιπτικό φορτίο 1,200 kN σε κόμβους της ανώτατης στάθμης, λόγω της δύναμης προέντασης.
Αρχικά φόρτισαν τα τέσσερα γωνιακά υποστυλώματα, ενώ στην συνέχεια φόρτισαν όλα τα εννέα υποστυλώματα του κτιρίου.
Η επιβαλλόμενη τάση σε κάθε υποστύλωμα είναι.
1200kN ( κολόνες 0,30 m x 0,40 m x 3,00m ) = 10 MPa

Στην οριακή κατάσταση αστοχίας του υποστυλώματος λόγο θλίψης ( λαμβάνοντας υπόψη και τον συντελεστή ασφαλείας που έχει τιμή 1,5 για το σκυρόδεμα ),η τάση θραύσης για σκυρόδεμα C 30 είναι. 30MPa/1.5=20 MPa

Επομένως η επιβαλλόμενη τάση στα υποστυλώματα είναι στο 50% της τάσης θραύσης.

Η μέγιστη τιμή μετατόπισης χωρίς την εφαρμογή της προέντασης (συμβατικές κατασκευές ) είναι 900,62kN για μετατόπιση 0.1296 m

Η μέγιστη τιμή μετατόπισης με την εφαρμογή θλιπτικού φορτίου 1,200 kN σε όλους τους κόμβους της ανώτερης στάθμης είναι 1,179.33kN για μετατόπιση 0.0864 m

H βελτίωση στη φέρουσα ικανότητα είναι 1,179.33 - 900.62 = 272.71 kN

H βελτίωση στη μέγιστη τέμνουσα βάσης είναι 278.71/900.92=30.9%




Τοποθετημένα στον χειρότερο φορέα που έχει κολόνες με μικρή διατομή κάτοψης, και μικρή αντίσταση στο δώμα και στο Π της βάσης στην ταλάντωση, και με μόνο ένα θλιπτικό φορτίο στο κέντρο της κάθε κολόνας,
έχουμε αυτά τα αποτελέσματα.

Φαντάσου πόσο πιο πολύ θα αυξηθεί η φέρουσα ικανότητα του κτηρίου, αν εφαρμόζαμε τα θλιπτικά αυτά φορτία σε τέσσερα σημεία στις γωνίες ενός φρεατίου, και στα δύο άκρα των τοιχίων της κατασκευής.
Γενικά...
Διαπιστώθηκε ότι η εφαρμογή του συστήματος έχει εν γένει ευεργετικές επιδράσεις στη φέρουσα ικανότητα της κατασκευής σε πλευρικά φορτία, καθώς σε κάθε περίπτωση την αυξάνει.

Κρίνεται ότι τα αποτελέσματα της προκαταρκτικής διερεύνησης είναι ενθαρρυντικά, αλλά απαιτείται περαιτέρω αναλυτικότερη διερεύνηση του συστήματος σε δύο φάσεις.
Πρώτον σε επίπεδο αναλυτικότερης προσομοίωσης, όπου θα εξεταστούν περισσότερα και λεπτομερέστερα μοντέλα κατασκευών και με περισσότερες φορτίσεις.

Δεύτερον, σε επίπεδο πειράματος σε σεισμική τράπεζα, όπου θα πρέπει να εξεταστεί μία σειρά κατασκευών υπό κλίμακα και να αξιολογηθεί η συμπεριφορά του συστήματος και της μεθόδου σε πραγματικές συνθήκες φόρτισης.

Εγώ βασικά δεν λέω ότι είναι ανάγκη να εφαρμόσουμε θλιπτικά φορτία στα υποστυλώματα.
Είναι αρκετή για μένα η πάκτωση του τένοντα στο έδαφος, διότι και χωρίς την προένταση ο τένοντας θα φέρει μία αντίσταση στο δώμα την στιγμή που ο φέρον ταλαντεύεται.
Πρέπει όμως το σύστημα να είναι τοποθετημένο σε μεγάλο μακρόστενο τοιχίο πακτωμένο στα δύο άκρα, και αυτό το τοιχίο να αντέχει τις κάθετες τέμνουσες που εφαρμόζονται κατά την ταλάντωση στον κάθετο άξονά του, προερχόμενες από την αντίδραση αφενός του τένοντα στο δώμα, και αφετέρου του εδάφους στο ύψος τις βάσης.

Κατά την ταλάντωση,το μεγάλο τοιχίο, λόγο γεωμετρικού σχήματος και ακαμψίας, έχει την τάση να σηκωθεί πολύ πιο πάνω από το δώμα από όταν είναι σε ηρεμία.
Εκεί αντιδρά ο τένοντας, και δεν το αφήνει να σηκωθεί, και από το άλλο αντικριστό μέρος του τοιχίου στο ύψος της βάσης, αντιδρά το έδαφος.
Το μικρό τετράγωνο υποστύλωμα έχει πολύ μικρή ακτίνα ανόδου στο δώμα, και μεγάλη πλαστιμότητα και η αντίδραση του τένοντα είναι πολύ μικρή,
αλλά και να αντιδράσει στο δώμα ο τένοντας, το μικρό υποστύλωμα θα λυγίσει.


Η προσομοίωση που έγινε στο Μετσόβιο, εφαρμόζοντας φορτία σε μικρά υποστυλώματα δεν είναι το ζητούμενο του συστήματος.
Το ζητούμενο του συστήματος είναι η πάκτωση στο έδαφος του τένοντα, η αντίσταση στο δώμα και στην άλλη μεριά του Π της βάσης, σε μακρόστενα τοιχία πακτωμένα στις δύο άκρες τους
Εν τούτης βλέπουμε από την προσομοίωση που έγινε, ( αν και είναι γνωστό από την βιβλιογραφία της προέντασης ) ότι η προένταση στα πλαίσια της επαλληλίας είναι πολύ ευεργετική ακόμα και αν αυτή εφαρμοσθεί σε λεπτά υποστυλώματα, διότι έχει πολύ θετικά αποτελέσματα,
καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε και άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, ακόμα αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.

Η προσομοίωση δεν είχε μέσα ούτε τον τένοντα ο οποίος είναι πολύ ευεργετικός για να σταματά την κάμψη, ούτε την πάκτωση του τένοντα με το έδαφος, ώστε να έχουμε την αντίδραση του τένοντα στο δώμα,
και το κυριότερο που δεν είχε ήταν η φόρτιση στα δύο άκρα μεγάλων τοιχίων.

Δηλαδή η προσομοίωση που έγινε ήταν παρεμφερή και όχι το ζητούμενο.
Εν τούτης, ακόμα και έτσι τα αποτελέσματα ήταν καλά.

Για αυτόν τον λόγο εγώ επιμένω ότι το καλύτερο είναι η πάκτωση με ολίγον προένταση. ( μερική προένταση )

Διευκρίνηση φορτίσεων προέντασης, που εφαρμόζονται μεταξύ δώματος και εδάφους

Όταν ο μηχανισμός του υδραυλικού συστήματος εφαρμόζει προένταση μεταξύ εδάφους και δώματος, εσείς νομίζετε ότι το έδαφος θα υποχωρήσει γιατί είναι μαλακό, και δέχεται περισσότερα φορτία από την πρόσθετη φόρτιση της προέντασης

Δεν συμβαίνει όμως αυτό.

Όταν λέμε ότι ο μηχανισμός του υδραυλικού συστήματος εφαρμόζει προένταση μεταξύ εδάφους και δώματος, στην πραγματικότητα αυτό που γίνεται είναι ότι εξασκούνται φορτία προέντασης μεταξύ βάσης και δώματος, και την ίδια στιγμή φορτίσεις προς στα πρανή της γεώτρησης.

Δηλαδή ποτέ ο υδραυλικός ελκυστήρας δεν φορτίζει το έδαφος με πρόσθετες κάθετες φορτίσεις πέραν των στατικών φορτίσεων του φέροντα,
όταν εφαρμόζουμε την προένταση
Απεναντίας βοηθάει το έδαφος να μην πάθει καθίζηση από τα φορτία της κατασκευής, λόγο των πλάγιων φορτίσεων που εξασκεί στα πρανή της γεώτρησης.

Δηλαδή είναι ένας μηχανισμός που πακτώνεται στα πρανή της γεώτρησης,
στηρίζοντας την βάση, και ταυτόχρονα εφαρμόζει προένταση στα κάθετα στοιχεία, πλην του εδάφους.
Το έδαφος δηλαδή δεν δέχεται ουδεμίαν προένταση.
Αυτός ο μηχανισμός είναι ισχυρός τόσο στα κάθετα, όσο και στα ανοδικά φορτία, προστατεύοντας τον φέροντα και από την ταλάντωση, και από την καθίζηση του εδάφους.

Η αιτία βρίσκεται στον μηχανισμό της άγκυρας, και συγκεκριμένα στους δύο σωλήνες που φέρει.

http://postimage.org/image/2dmcy79yc/

Αυτοί οι σωλήνες έχουν διαφορετική διάμετρο, έτσι ώστε ο ένας να ολισθαίνει μέσα στον άλλον.
Ο εσωτερικός σωλήνας είναι συνδεδεμένος με τον τένοντα.
Ο εξωτερικός σωλήνας που είναι και ο υποδοχέας του τένοντα, καταλήγει κάτω από την βάση, και αυτός είναι η αιτία που η βάση δεν υποχωρεί όταν το έδαφος τείνει να παραμορφωθεί,λόγο στατικών φορτίων και από την επιβολή φορτίσεων προερχόμενες από την προένταση.

Αυτός ο σωλήνας όταν δέχεται τα φορτία της βάσης, τείνει να υποχωρήσει κάθετα.

Αδυνατεί όμως να υποχωρήσει κάθετα, διότι είναι συνδεδεμένος με πίρους και μπάρες πυραμοειδούς μορφής, στο άλλο άκρο του, οι οποίες μπάρες μεταβιβάζουν τα φορτία της βάσης στα πρανή της γεώτρησης.
Αυτή η μεταβίβαση των φορτίων μέσο των μπαρών, υποβοηθείται και από τις άλλες πυραμοειδούς μορφής μπάρες οι οποίες είναι ανεστραμμένες και συνδεδεμένες με τον εσωτερικό σωλήνα του τένοντα.
Κατ αυτόν τον τρόπο, οι μπάρες σπρώχνουν κατά ένα σημείο από διαφορετική κατεύθυνση, και αποκλείουν την ολίσθηση στα πρανή της γεώτρησης.
Η πάνω σωλήνα μεταβιβάζει τάσεις της βάσης στα πρανή της γεώτρησης, και η κάτω σωλήνα μεταβιβάζει τάσεις του τένοντα στα πρανή της γεώτρησης.

http://postimage.org/image/2mlql3ag4/

Δηλαδή έχουμε ένα νέο είδος πασσάλου τριβής, με το επιπλέον πλεονέκτημα την συνεχή τάση στα πρανή της γεώτρησης που εφαρμόζεται μέσο του τένοντα και των στατικών φορτίων του φέροντα.

seismic
Πλήρες Μέλος
Δημοσιεύσεις: 88
Εγγραφή: 23 Δεκ 2012 23:59

Re: Το απόλυτο αντισεισμικό σύστημα

Δημοσίευσηαπό seismic » 25 Φεβ 2013 17:17

Για να μην σας κουράζω άλλο, υπάρχουν τρεις μέθοδοι που μπορούμε να κατασκευάσουμε έργα με τον υδραυλικό ή τον απλό ελκυστήρα.

1) Μέθοδος

Με υποστυλώματα όπως η προσομοίωση που έγινε στο Μετσόβιο.
Όφελος Το λένε τα αποτελέσματα που σας παρέθεσα.

2) Μέθοδος

Αν σκέπτεστε να κατασκευάσετε άκαμπτα κτίρια χωρίς παραμορφώσεις αλλά να είναι και η πιο γερές κατασκευές στον κόσμο που έγιναν ποτέ, τότε η λύση είναι αυτή http://postimage.org/image/r1aadhj8/ ή αυτή που σας παραθέτω σε αυτό το βίντεο. ( Συγνώμη για την κακή ποιότητα του βίντεο )
http://www.youtube.com/watch?v=JJIsx1sKkLk
Μικρό πείραμα.
Θα σας πω απλά την ιδέα μου.
Mια μέρα έβλεπα τηλεόραση με θέμα εκπομπής ...γιατί οι παγόδες στην Κίνα δεν πέφτουν κατά την διάρκεια του σεισμού.Ένας μηχανικός παρατήρησε ότι ο κύριος λόγος που οι τρις τέσσερις ξύλινοι όροφοι δεν έπεφταν, ήταν ένας τοποθετημένος κορμός δένδρου που διαπερνούσε στο κέντρο τοις ασύνδετες κατά τα άλλα παγόδες.
Την ώρα αυτή την προσοχή μου τράβηξε μια επιτραπέζια σιντιέρα (αυτές με το κεντρικό στέλεχος) Η σκέψη μου εκείνη την στιγμή πήγε στην βίδα και το ούπα. Αν βίδωνα το στέλεχος της σιντιέρας (ανελκυστήρα ή σταυροειδή κολόνα) με ένα μηχανισμό με το έδαφος ,και δημιουργούσα δύο ραντιεφ βάσεις με ελαστικά μεταξύ των , είχα λύση το πρόβλημα,της συμπεριφοράς των δυνάμεων του σεισμού ,στον υφιστάμενο σκελετό τού κτιρίου,ως πρός τον οριζόντιο και κάθετο άξονά του.
Και έκανα αυτό. http://www.youtube.com/watch?v=KPaNZcHBKRI

Έχω κάνει και μόνος μου ένα μικρό πείραμα. http://www.youtube.com/watch?v=JJIsx1sKkLk
Δες αυτό το βίντεο.
Δείχνει τρεις διαφορετικούς σκελετούς οικοδομής.

α) Ο πρώτος σκελετός οικοδομής είναι ελαφρύς, και για τον λόγο αυτό όταν κουνώ το τραπεζάκι αυτός ναι μεν ταλαντεύεται αλλά δεν παραμορφώνετε. ( γιατί οι γωνίες του αντέχουν το βάρος του σκελετού, με αποτέλεσμα οι δεξιές κολόνες να σηκώνουν τις αριστερές, και εναλλάξ οι αριστερές τις δεξιές)
β) Ο δεύτερος φέροντας σκελετός οικοδομής είναι πιο βαρύς, διότι του τοποθέτησα δύο τούβλα, για να έχει το βάρος μιας πραγματικής οικοδομής υπό κλίμακα.
Όταν κούνησα πάλη το τραπεζάκι, η συμπεριφορά του σκελετού ήταν άλλη.
Οι δεξιές κολόνες δεν σήκωναν πια τις αριστερές.
Αυτό που έγινε, ήταν οι γωνίες από 90 μοίρες που ήταν αρχικά, να παραμορφώνονται και να γίνονται πότε 80 μοίρες, πότε 100 μοίρες.
Αυτό γίνεται διότι κατά την ταλάντωση η κολόνες από κάθετες που είναι αρχικός, αλλάζουν μερικές μοίρες.
Αφού οι κολόνες αλλάζουν την κλίση τους, και συγχρόνως είναι ενωμένες στην γωνία με την δοκό, σπρώχνουν την δοκό προς τα πάνω.
Η δοκός όμως δεν μπορεί να πάει προς τα πάνω, διότι το βάρος των τούβλων την σπρώχνει προς τα κάτω και σπάνε οι γωνίες της οικοδομής ( διότι δημιουργούνται ροπές στις γωνίες, οι οποίες με την σειρά τους δημιουργούν τέμνουσες στις κολόνες και στους δοκούς και σπάνε )
Αυτό συμβαίνει σήμερα στις κατασκευές.
Τι προτείνω εγώ.
γ) Κατασκεύασα έναν σταυρό, ( είναι τα χωρίσματα των διαμερισμάτων ) και τον βίδωσα με την ξύλινη βάση που είναι το έδαφός θεμελίωσης
Πέρασα κολάρο τον σκελετό στον ξύλινο σταυρό.
Του έβαλα επάνω και τα τούβλα, με πολύ ψιλό κέντρο βάρους.
Κούνησα πάλη το τραπεζάκι, και παρατήρησα ότι οι γωνίες δεν παραμορφώνονται καθόλου.
Η παραμόρφωση είναι αυτή που ρίχνει το σπίτι στον σεισμό.
Εγώ αυτήν την παραμόρφωση σταμάτησα στον σκελετό.
Δες τις γωνίες πως αντιδρούν όταν έχουμε σεισμό, με την μέθοδο που προτείνω.
Καμία παραμόρφωση, 0 επισκευές μετά τον σεισμό.

3) Μέθοδος

Αυτή η μέθοδος είναι σύμμεικτη κατασκευή
Δηλαδή ένας συνδυασμός, - οριζόντιας σεισμικής μόνωσης, -με άκαμπτα προτεταμένα,-και πλάστιμα στοιχεία.
Αυτός ο φορέας είναι σε αυτό το βίντεο της ευρεσιτεχνίας, και είναι το απόλυτο αντισεισμικό σύστημα που έγινε στην ιστορία αυτού του κόσμου.
http://www.youtube.com/watch?v=KPaNZcHBKRI


H εδαφομηχανική και η βραχομηχανική κρύβουν πολλά προβλήματα διότι το έδαφος είναι γενικά ιδιαίτερα ανομοιογενές λόγω
της φυσικής του γένεσης και των επακόλουθων μετακινήσεων του φλοιού της γης,
έχει μεταβλητή σύνθεση και ανεξέλεγκτη μηχανική συμπεριφορά, οπότε αυτοί οι λόγοι μπορούν να δημιουργήσουν διαφορετικές παραμορφώσεις του εδάφους σε κάθε θεμελίωση του ιδίου φορέα, έστω και αν τα φορτία και η θεμελίωση είναι ίδια.
Λόγο οικονομικού κόστους, ( προπαντός στις μικρές κατασκευές ) δεν εφαρμόζουμε ούτε καν δειγματοληπτικούς ελέγχους ( καρότα )

Με την μέθοδο που πειραματίζομαι, ο δειγματοληπτικός έλεγχος είναι δυνατόν να επιτευχθεί πιο εύκολα, μιας και το μηχάνημα θα είναι εκεί για τις γεωτρήσεις.
Αυτό που δεν υπήρχε μέχρι σήμερα και δεν μπορούσαμε να εφαρμόσουμε ολοκληρωτική πάκτωσης της κατασκευής στο έδαφος, είναι ένας αυτοματισμός ενός μηχανισμού ο οποίος θα έλεγχε αυτόματα τις παραμορφώσεις του εδάφους, και θα τις διόρθωνε.

Εγώ δημιούργησα δύο εντελώς διαφορετικούς μηχανισμούς, που ο κάθε ένας έχει διαφορετικά χαρακτηριστικά, αλλά συντελούν και οι δύο στην πάκτωση της κατασκευής με το έδαφος.

α)[/b]Ελκυστήρας δομικών έργων
Αυτός ο μηχανισμός είναι πολύ οικονομικός, και χρησιμεύει για να πακτώνει σε βραχώδη εδάφη.


Δημιουργεί ισχυρή πάκτωση, αλλά δεν διορθώνει τυχών παραμορφώσεις....διότι όπως ξέρουμε τα βράχια και γενικά τα στερεά δεν παραμορφώνονται.
Αυτό δεν σημαίνει ότι δεν μπορούμε να τον χρησιμοποιήσουμε σε μαλακά εδάφη για την συμπύκνωση αυτών.
Όπως ξέρουμε η συμπύκνωση των χαλαρών εδαφών, μειώνει τις παραμορφώσεις των εδαφών που συντελούνται από τις επιβαλλόμενες φορτίσεις.

Είναι ο μηχανισμός αυτός. http://postimage.org/image/15or8eeuc/
Αυτόν τον μηχανισμό μπορούμε να τον χρησιμοποιήσουμε για τρεις σκοπούς.
1) για να πακτώσουμε την βάση ή το δώμα της κατασκευής με βραχώδη εδάφη.
2) για να πακτώσουμε την κοιτόστρωση ( συμπληρωματικά με τον υδραυλικού ελκυστήρα ) και συγχρόνως να συμπυκνώσουμε χαλαρά εδάφη.
3) Μόνο για να συμπυκνώσουμε τα χαλαρά εδάφη.

[/b]Εφαρμογή
Μέθοδος προέντασης του απλού ελκυστήρα
http://postimage.org/image/15or8eeuc/
α) Όπως βλέπετε την φωτογραφεία, αν υποθέσουμε ότι το ύψος των ξύλων που στηρίζετε ο ελκυστήρας είναι το επίπεδο του εδάφους.
β) Αν υποθέσουμε ότι τα δύο τούβλα είναι υδραυλικοί γρύλοι.

Τότε για να ολοκληρώσουμε την προένταση, ακολουθούμε τα εξής πέντε απλά βήματα.
α) Ανυψώνουμε στον ίδιο χρόνο σταδιακά τους γρύλους.
β) Μετά την προένταση βιδώνουμε την κάτω βίδα της φωτογραφίας έως ότου αυτή κοντράρει στο πάνω μέρος της λαμαρίνας που κλείνει την οπή της γεώτρησης στο επίπεδο του εδάφους.
γ) Αφαιρούμε τους γρύλους.
δ) Από μία οπή που έχουμε κατασκευάσει στην λαμαρίνα η οποία βρίσκετε στο επίπεδο του εδάφους, γεμίζουμε την οπή της γεώτρησης με σκυρόδεμα.
ε) Το άλλο εξέχον τμήμα του ελκυστήρα άνωθεν του εδάφους, πακτώνετε μέσα στην κοιτόστρωση κατά την παρασκευή και τοποθέτηση του σκυροδέματος, ή με την προέκταση του τένοντα πακτώνουμε την κατασκευή στο δώμα.

Πριν εναποθέσουμε το σκυρόδεμα στην οπή της γεώτρησης, καλό είναι να προ εντείνουμε τον ελκυστήρα σταδιακά κατά διαστήματα μερικών ημερών, ώστε να διορθώσουμε την έρπη του χάλυβα, και τις παραμορφώσεις του εδάφους που υφίστανται κατά την τάνυση του τένοντα.

Κατ αυτήν την μέθοδο, και οι αρχικές τάσης του ελκυστήρα προς τα πρανή της γεώτρησης διατηρούνται, και ο ελκυστήρας δεν οξειδώνεται.

Αν θέλουμε απλά να συμπυκνώσουμε το έδαφος χωρίς να πακτώσουμε την κατασκευή, τότε ακολουθούμε την ίδια διαδικασία, μόνο που αφού συμπυκνώσουμε τα πρανή της γεώτρησης, αφαιρούμε τον ελκυστήρα και γεμίζουμε την οπή της γεώτρησης με οπλισμένο ή απλό σκυρόδεμα.
Είναι κάτι μεταξύ σαν τις τσιμεντενέσεις και τους πασσάλους.

[b]Υδραυλικός Ελκυστήρας Δομικών Έργων
http://postimage.org/image/pl67iidjj/
Αυτός κατασκευάστηκε ιδικά για...
1) να διορθώνει αυτόματα την χαλαρότητα των εδαφών, διαχρονικά, όποτε και για όποια αιτία προκαλέσει την παραμόρφωσή τους, διατηρώντας την πρόσφυση του αγκυρίου με το έδαφος στις επιθυμητές τιμές των προδιαγραφών που απαιτούνται για την ιδανική πάκτωση.


Πως ο υδραυλικός ελκυστήρας κατορθώνει να διορθώνει αυτόματα την χαλαρότητα των εδαφών, διαχρονικά, όποτε και για όποια αιτία προκαλέσει την παραμόρφωσή τους, διατηρώντας την πρόσφυση του αγκυρίου με το έδαφος στις επιθυμητές τιμές των προδιαγραφών που απαιτούνται για την ιδανική πάκτωση.

Ο υδραυλικός ελκυστήρας αποτελείται από ένα
συρματόσχοινο το οποίο διαπερνά ελεύθερο στο κέντρο τα κάθετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το
μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του είναι
πακτωμένο με ένα μηχανισμό τύπου άγκυρας που πακτώνεται
στο ύψος της θεμελίωσης στα πρανή μιας γεώτρησης και δεν
μπορεί να ανέλθει. Στο επάνω μέρος του, το συρματόσχοινο,
είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο
οποίος το έλκει με μία συνεχή δύναμη ανόδου. Η ασκούμενη
έλξη στο συρματόσχοινο από τον υδραυλικό μηχανισμό και η
αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτωμένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη
στο δομικό έργο.
Ας εξετάσουμε τώρα τον υδραυλικό μηχανισμό έλξης.
Αποτελείται από ένα χιτώνιο, στο οποίο μέσα του περικλείει ένα έμβολο.
Το έμβολο είναι συνδεδεμένο με το συρματόσχοινο.
Το χιτώνιο στο κάτω άκρο του έχει υδραυλική πίεση η οποία εξασκεί ανοδικές τάσεις προς το έμβολο, και καθοδικές τάσεις προς την κάτω βάση ( πάτο ) του χιτωνίου.
Με λίγα λόγια, λόγο υδραυλικής πίεσης το έμβολο έχει τάση ανοδική τανύζοντας τον τένοντα, και το χιτώνιο έχει τάση καθοδική φορτίζοντας τον φέροντα προς τα κάτω.
Σε οποιαδήποτε μεταβολή παραμόρφωσης επέλθει στο μαλακό έδαφος, (λόγο πλαγιοαξωνικών τάσεων εφαρμογής της άγκυρας προς αυτό,) το έμβολο θα σηκωθεί επάνω ( λόγο υδραυλικής πίεσης ) και θα διορθώσει αυτόματα τις τάσης της άγκυρας προς τα πρανή της γεώτρησης.

Αν ο θάλαμος πιέσεως έχει και μία βαλβίδα η οποία είναι συνδεδεμένη με ένα πιεσόμετρο και ένα πιεστικό, τότε μπορούμε να ελέγξουμε και την πίεση του θαλάμου αυτόματα, διορθώνοντας τυχών διαρροές πίεσης, αλλά και ελέγχουμε και την πλαστιμότητα του φέροντα.

Ο υδραυλικός ελκυστήρας, εκτός από την αυτόματη διόρθωση της παραμόρφωσης των πρανών, ελέγχει αυτόματα και την τυχών διαρροή
( έρπη ) του χάλυβα, και ακόμα την σμίκρυνση του σκυροδέματος λόγο ξήρανσης.
Κατ αυτόν τον τρόπο,
1) ο τένοντας είναι διαχρονικά πάντα τανυσμένος,
2)το έδαφος δεν υποχωρεί διότι όπως ανέφερα πάρα πάνω δεν δέχεται ουδεμία έξτρα φόρτιση από την προένταση,
3) απεναντίας τώρα η βάση έχει ένα έξτρα σημείο στήριξης, αυτό των πρανών.
4) Το υδραυλικό σύστημα του ελκυστήρα είναι ( λόγο υδραυλικής ελαστικής πίεσης ) ένας μηχανισμός απόσβεσης σεισμικής ενέργειας στο δώμα, εξασφαλίζοντας στον φέροντα, φθίνουσα αρμονική ταλάντωση.

5) λόγο ισχυρής πάκτωσης των άκρων, αποκλείεται η αστοχία λόγο συνάφειας.
6) Το Μετσόβιο μέσο εφαρμοσμένης έρευνας απέδειξε ότι η προένταση είναι ευεργετική και στα κατακόρυφα στοιχεία.

7)Στατικά, αλλάζει την φορά των φορτίσεων του σεισμού, ( λόγο αντίστασης στην ταλάντωση του δώματος και της βάσης ) οι οποίες αντί να καταλήξουν στους κόμβους ως τέμνουσες, τις μεταφέρει στον κάθετο άξονα του υποστυλώματος όπου εκεί η διατομή είναι μεγάλη και μπορεί άνετα να τις παραλάβει.
διορθώνει αυτόματα την παραμόρφωση του εδάφους και της τάσεις της άγκυρας.

Την αρχική προένταση του υδραυλικού ελκυστήρα την εφαρμόζει ελκυστήρας του εμπορείου, και αφού το μαλακό έδαφος παραμορφωθεί αρκετά, από αυτήν την προένταση, πακτώνουμε το συρματόσχοινο με το έμβολο.
Μετά τοποθετούμε την επιθυμητή υδραυλική πίεση στον ελκυστήρα, η οποία χρησιμεύει μόνο για να διορθώνει τις παραμορφώσεις.

Βασικά είναι ένας έξυπνος μηχανισμός που διατηρεί αυτόματα τις επιθυμητές τάσεις στα πρανή της γεώτρησης , στον φέροντα, στον τένοντα,
και συγχρόνως είναι ένας μηχανισμός σεισμικής απόσβεσης, παρέχοντας και πρόσθετη στήριξη στην βάση, μεταβιβάζοντας το σεισμικά φορτία σε πιο ισχυρές διατομές.

Η μέθοδος της οριζόντιας σεισμικής μόνωσης με εφέδρανα ή άλλα συστήματα είναι σε εφαρμογή πάρα πολλά χρόνια.
Είναι μία αξιόλογη μέθοδος η οποία όμως δεν παύει να θέτει περιορισμούς τόσο στην κατασκευή, όσο και στο οικονομικό κόστος.
Συγκεκριμένα
1) Το πολύ ψιλό κτίριο το οποίο έχει εφέδρανα, έχει πρόβλημα με τον αέρα.
2) Οι κατασκευές πρέπει να έχουν μια απόσταση μεταξύ τους, και να μην εφάπτεται η μία με την άλλη, ώστε να δουλεύει η οριζόντια σεισμική μόνωση.
3) Για να τοποθετηθούν τα εφέδρανα χρειάζεται διπλή βάση, η οποία ανεβάζει πολύ το κόστος της κατασκευής.

4) Σε πάρα πολύ μεγάλα φορτία χάνετε η ελαστικότητα του εφέδρανου, οπότε και η αποτελεσματικότητα της σεισμικής μόνωσης.



Ο υδραυλικός ελκυστήρας συνεργάζεται και με τα εφέδρανα, και λύνει τα προβλήματα που παρουσιάζει.
Αυτά τα μαύρα στο βίντεο, είναι εφέδρανα.
http://www.youtube.com/watch?v=KPaNZcHBKRI

Λύνει όμως και άλλα προβλήματα των κατασκευών, τα οποία δεν λύνουν τα εφέδρανα.
Π.χ προβλήματα θεμελίωσης, κόστους, και δεν πειράζει αν τα κτίρια εφάπτονται.
Άλλο παράδειγμα είναι οι γέφυρες, όπου το εφέδρανο εφαρμόζει οριζόντια σεισμική μόνωση, στο οδόστρωμα, και ο υδραυλικός ελκυστήρας προστατεύη τους πυλώνες από τις φορτίσεις του σεισμού, εξασφαλίζοντας μικρότερες βάσεις με μεγαλύτερες σεισμικές αντοχές.

Σε κατακόρυφα προτεταμένα φράγματα ο υδραυλικός ελκυστήρας θα μειώσει το Ο.Σ πάρα πολύ. Το εφέδρανο έχει άλλες ιδιότητες από τον ελκυστήρα.
Θα προστατέψει τις ελαφριές κατασκευές από τους ανεμοστρόβιλους.
Θα προστατέψει τα ψιλά κτίρια από την ταλάντωση που εφαρμόζει ο αέρας σε αυτά. κ.λ.π
Ο ελκυστήρας δεν εφαρμόζει σεισμική μόνωση.
Ο ελκυστήρας αυξάνει την ικανότητα των κατασκευών τόσο ώστε οι κατασκευές να αντέχουν γενικά τις φορτίσεις εξωτερικών παραγόντων όπως είναι ο αέρας και ο σεισμός.

Προβλήματα μεθόδου προσομοίωσης πεπερασμένων ως προς την κάθετη προένταση υποστυλωμάτων

Δεν υπάρχει σε όλο τον κόσμο πρόγραμμα πεπερασμένων στοιχείων για να προσομοιώσουμε κάθετη προένταση υποστυλωμάτων.

Αυτό καθιστά πάρα πολύ δύσκολη έως και αδύνατη την προσομοίωση του αντισεισμικού, ως προςτην εισαγωγή δεδομένων στον Υ/Η.

Δεδομένου ότι, εκτός από την κάθετη προένταση των υποστυλωμάτων, πρέπει να προσομοιωθεί και....

1) ο συντελεστής χαλαρότητας του εδάφους,
2) και οι αντοχές του μηχανολογικού μηχανισμού,
3)και τα φορτία που πρέπει να εξασκήσει στα πρανή της γεώτρησης για την αναγκαία πάκτωση,
4)και ακόμα πρέπει να προσομοιωθεί και ο μηχανισμός του άνω υδραυλικού συστήματος, τόσο ως προς την αντοχή του, όσο και ως προς το τι φορτία πρέπει να εξασκηθούν μέσο της υδραυλικής τους πίεσης,
5)και ακόμα πια πρέπει να είναι η πρέπουσα αντοχή του τένοντα, ώστε να μπορεί να παραλάβει την εφαρμοσμένη προένταση καθώς και την αντίδραση της ανοδικής τάσης του φέροντα στο δώμα, προερχόμενη από την ταλάντωση του φέροντα.
6) Διότι ο υδραυλικός μηχανισμός του υδραυλικού ελκυστήρα είναι από μόνος του ένας μηχανισμός φθίνουσας αρμονικής απόσβεσης της σεισμικής ενέργειας, και διότι από την υδραυλική πίεση που θα εξασκεί εξαρτάτε η καμπύλη συμπεριφοράς ή καμπύλη ικανότητας του φέροντα και των υποστυλωμάτων, πρέπει να εξεταστεί και αυτός ο ρόλος κατά την προσομοίωση.
7) Αν πρέπει να γίνει διπλή προένταση, ( πρώτα, μεταξύ ύψους της θεμελίωσης και πρανών γεώτρησης, και δεύτερον, μεταξύ ύψους θεμελίωσης και δώματος ) πρέπει να προσομοιωθούν και αυτές οι εντάσεις.

Αυτά που ανέφερα δεν είναι τα μόνα που πρέπει να προσομοιωθούν, απλώς είναι τα μη υπάρχοντα δεδομένα των Υ/Η.

Για τους πάρα πάνω λόγους, είναι αδύνατη η προσομοίωση σε Υ/Η, και μόνο κατά προσέγγιση, με μεγάλη απόκλιση επί της αλήθειας των αποτελεσμάτων.
Τα καλύτερα αποτελέσματα θα τα πάρουμε μόνον από πείραμα σε σεισμική τράπεζα, με την μέθοδο που εφάρμοσα σε αυτό το βίντεο.
http://www.youtube.com/watch?v=JJIsx1sKkLk
και μετά πρέπει να γίνουν ξεχωριστά πειράματα του μηχανισμού της άγκυρας ως προς την αντοχή του σε πάκτωση, καθώς και σε ανοδικά και καθοδικά φορτία.
Αν τα φορτία τα οποία πρέπει να εφαρμόσει ο υδραυλικός ελκυστήρας στον φέροντα οργανισμό, ( ώστε να εφαρμόσει ισχυρή πάκτωση στα πρανή της γεώτρησης ) είναι απαγορευτικά για τις θλιπτικές ικανότητες των υποστυλωμάτων, τότε εφαρμόζουμε μία άλλη μέθοδο.

Η άλλη μέθοδος περιλαμβάνει προένταση σε δύο φάσεις, και την χρησιμοποίηση τόσο του απλού ελκυστήρα, όσο και την χρησιμοποίηση μόνο του υδραυλικού μηχανισμού του υδραυλικού ελκυστήρα.

Μέθοδος εφαρμογής.

Εφαρμόζουμε την μέθοδο πάκτωσης του απλού ελκυστήρα, όπως περιγράψαμε πάρα πάνω.

Αφού ολοκληρώσουμε την πάκτωση του απλού ελκυστήρα, ενώνουμε τον εξέχοντα τένοντα με έναν άλλο, και αφού περάσει μέσα από τα υποστυλώματα ελεύθερος μέσα από μία σωλήνα, και μέσα από την υποδοχή του υδραυλικού μηχανισμού, τότε εφαρμόζουμε την επιθυμητή προένταση που αντέχουν τα υποστυλώματα με έναν ελκυστήρα του εμπορείου τοποθετημένο στο καπάκι του εμβόλου.

Κατόπιν αφού ολοκληρωθεί η προένταση με τον ελκυστήρα του εμπορείου, και αφού πακτώσουμε και τον τανυσμένο τένοντα στο έμβολο, κατόπιν τοποθετούμε την επιθυμητή υδραυλική πίεση στον θάλαμο πιέσεως του υδραυλικού μηχανισμού.

Κατ αυτήν την μέθοδο εξασφαλίζουμε

1) Ισχυρή πάκτωση της άγκυρας στο έδαφος, διότι τώρα μπορούμε να εφαρμόσουμε πολύ μεγάλες εντάσεις προέντασης, ( οπότε και καλύτερη πάκτωση της άγκυρας ) χωρίς όμως να επιβαρύνουμε με αυτές τις τάσεις και τα υποστυλώματα.

2) Η δεύτερη προένταση που εφαρμόζουμε μεταξύ βάσης και δώματος, είναι στα πλαίσια της επαλληλίας της αντοχής των υποστυλωμάτων,
ώστε αφενός να πάρουμε τα ευεργετικά καλά της κάθετης προέντασης, και αφετέρου να εφαρμόσουμε στον φέροντα μέσο του υδραυλικού μηχανισμού, φθίνουσα αρμονική απόσβεση των φορτίσεων του σεισμού, και τον έλεγχο της καμπύλη συμπεριφοράς του φέροντα και των υποστυλωμάτων.


Επιστροφή σε “ΘΕΜΑΤΑ ΔΟΜΙΚΩΝ ΜΕΛΕΤΩΝ & ΕΡΓΩΝ”



Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 2 επισκέπτες